【題目】在如圖所示的幾何體中,四邊形
是等腰梯形,
,
,
平面
,
,
.
![]()
(1)求證:
;
(2)求二面角
的余弦值.
【答案】(1)證明見解析;(2)
.
【解析】試題分析:
(1)由題意結(jié)合角的關(guān)系可得
,
,由線面垂直的性質(zhì)可得
,故
平面
,
.
(2)結(jié)合(1)的結(jié)論可知
兩兩垂直,以
為坐標(biāo)原點(diǎn),分別以
所在的直線為
軸,
軸,
軸建立空間直角坐標(biāo)系,計(jì)算可得平面
的一個(gè)法向量為
,而
是平面
的一個(gè)法向量,據(jù)此計(jì)算可得二面角
的余弦值為
.
試題解析:
(1)證明:因?yàn)樗倪呅?/span>
是等腰梯形,
,
.所以
.
又
,所以
,因此,
,
,
平面
,
,所以
,
,
所以
平面
;所以
.
(2)由(1)知,
,同理
,
又
平面
,因此
兩兩垂直,以
為坐標(biāo)原點(diǎn),分別以
所在的直線為
軸,
軸,
軸建立如圖的空間直角坐標(biāo)系,
![]()
不妨設(shè)
,則
,
,
,
,因此
,
.
設(shè)平面
的一個(gè)法向量為
,則
,
,∴
,
所以
,取
,則
,
由于
是平面
的一個(gè)法向量,
則
,
,
所以二面角
的余弦值為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)志愿者協(xié)會(huì)有6名男同學(xué),4名女同學(xué),在這10名同學(xué)中,3名同學(xué)來自數(shù)學(xué)學(xué)院,其余7名同學(xué)來自物理﹑化學(xué)等其他互不相同的七個(gè)學(xué)院,現(xiàn)從這10名同學(xué)中隨機(jī)選取3名同學(xué),到希望小學(xué)進(jìn)行支教活動(dòng)(每位同學(xué)被選到的可能性相同).
(1)求選出的3名同學(xué)是來自互不相同學(xué)院的概率;
(2)設(shè)
為選出的3名同學(xué)中女同學(xué)的人數(shù),求隨機(jī)變量
的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)準(zhǔn)備推出一種花卉植物用于美化城市環(huán)境,為評(píng)估花卉的生長(zhǎng)水平,現(xiàn)對(duì)該花卉植株的高度(單位:厘米)進(jìn)行抽查,所得數(shù)據(jù)分組為
,據(jù)此制作的頻率分布直方圖如圖所示.
![]()
(1)求出直方圖中的
值;
(2)利用直方圖估算花卉植株高度的中位數(shù);
(3)若樣本容量為32,現(xiàn)準(zhǔn)備從高度在
的植株中繼續(xù)抽取2顆做進(jìn)一步調(diào)查,求抽取植株來自同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左焦點(diǎn)為
,上頂點(diǎn)為
為坐標(biāo)原點(diǎn),橢圓的離心率
且
的面積為
.
(1)求橢圓的方程;
(2)設(shè)線段
的中點(diǎn)為
,經(jīng)過
的直線
與橢圓交于
兩點(diǎn),
,若點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn)在直線
上,求直線
方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是等邊三角形的三個(gè)頂點(diǎn),且長(zhǎng)軸長(zhǎng)為4.
![]()
求橢圓E的方程;
若A是橢圓E的左頂點(diǎn),經(jīng)過左焦點(diǎn)F的直線l與橢圓E交于C,D兩點(diǎn),求
與
為坐標(biāo)原點(diǎn)
的面積之差絕對(duì)值的最大值.
已知橢圓E上點(diǎn)
處的切線方程為
,T為切點(diǎn)
若P是直線
上任意一點(diǎn),從P向橢圓E作切線,切點(diǎn)分別為N,M,求證:直線MN恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
的焦點(diǎn)為
,點(diǎn)
在拋物線
上,
,直線
過點(diǎn)
,且與拋物線
交于
,
兩點(diǎn).
(1)求拋物線
的方程及點(diǎn)
的坐標(biāo);
(2)求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>
的函數(shù)
是奇函數(shù).
(1)求
的值;
(2)判斷函數(shù)
的單調(diào)性,并用定義證明;
(3)當(dāng)
時(shí),
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com