【題目】已知函數(shù)
,
.
(1)若
存在極大值
,證明:
;
(2)若關(guān)于
的不等式
在區(qū)間
上恒成立,求
的取值范圍.
【答案】(1)證明見(jiàn)解析;(2)
.
【解析】
(1)
.(x∈(0,+∞)).對(duì)a分類(lèi)討論,即可得出單調(diào)性極值.進(jìn)而證明結(jié)論.
(2)令h(x)=f(x)+ex-1-1=lnx-ax+a+ex-1-1,x∈[1,+∞),h(1)=0.
,
,對(duì)a分類(lèi)討論,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值與最值即可得出.
(1)![]()
當(dāng)
時(shí),
,
單調(diào)遞增,不存在極大值,
所以
,
在
上單調(diào)遞增,在
上單調(diào)遞減,
的極大值為
.
設(shè)
,
,
在
上單調(diào)遞減,在
上單調(diào)遞增,
.
所以
的極大值大于等于0.
(2)設(shè)
,
,
,
所以
單調(diào)遞增,
由
知
在
上單調(diào)遞減,在
上單調(diào)遞增,
,
,
若
,則
,
在
恒成立,
此時(shí),函數(shù)
在
上單調(diào)遞增,
,滿足條件.
若
,則
,所以存在
使得
,
即在
內(nèi),有
,
在
上單調(diào)遞減,
不滿足條件.
綜上,
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)代足球運(yùn)動(dòng)是世上開(kāi)展得最廣泛、影響最大的運(yùn)動(dòng)項(xiàng)目,有人稱(chēng)它為“世界第一運(yùn)動(dòng)”.早在2000多年前的春秋戰(zhàn)國(guó)時(shí)代,就有了一種球類(lèi)游戲“蹴鞠”,后來(lái)經(jīng)過(guò)阿拉伯人傳到歐洲,發(fā)展成現(xiàn)代足球.1863年10月26日,英國(guó)人在倫敦成立了世界上第一個(gè)足球運(yùn)動(dòng)組織——英國(guó)足球協(xié)會(huì),并統(tǒng)一了足球規(guī)則.人們稱(chēng)這一天是現(xiàn)代足球的誕生日.如圖所示,足球表面是由若干黑色正五邊形和白色正六邊形皮圍成的,我們把這些正五邊形和正六邊形都稱(chēng)為足球的面,任何相鄰兩個(gè)面的公共邊叫做足球的棱.已知足球表面中的正六邊形的面為20個(gè),則該足球表面中的正五邊形的面為______個(gè),該足球表面的棱為______條.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,已知傾斜角為
的直線
過(guò)點(diǎn)
,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系.曲線
的極坐標(biāo)方程為
,直線
與曲線
分別交于
、
兩點(diǎn).
(1)寫(xiě)出直線
的參數(shù)方程和曲線
的直角坐標(biāo)方程;
(2)若
,求直線
的斜率
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線C:
=1(a>0,b>0)的左右焦點(diǎn)為F1,F2過(guò)點(diǎn)F1的直線l與雙曲線C的左支交于AB兩點(diǎn),△BF1F2的面積是△AF1F2面積的三倍,∠F1AF2=90°,則雙曲線C的離心率為( 。
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)科站技術(shù)員為了解某品種樹(shù)苗的生長(zhǎng)情況,在該批樹(shù)苗中隨機(jī)抽取一個(gè)容量為100的樣本,測(cè)量樹(shù)苗高度(單位:
).經(jīng)統(tǒng)計(jì),高度在區(qū)間
內(nèi),將其按
,
,
,
,
,
分成6組,制成如圖所示的頻率分布直方圖,其中高度不低于
的樹(shù)苗為優(yōu)質(zhì)樹(shù)苗.
![]()
附:
,其中![]()
|
|
|
|
|
|
|
|
|
|
(1)求頻率分布直方圖中
的值;
(2)已知所抽取的這100棵樹(shù)苗來(lái)自于甲、乙兩個(gè)地區(qū),部分?jǐn)?shù)據(jù)如下
列聯(lián)表所示,將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有
%的把握認(rèn)為優(yōu)質(zhì)樹(shù)苗與地區(qū)有關(guān)?
甲地區(qū) | 乙地區(qū) | 合計(jì) | |
優(yōu)質(zhì)樹(shù)苗 | 5 | ||
非優(yōu)質(zhì)樹(shù)苗 | 25 | ||
合計(jì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某工廠每天固定成本是4萬(wàn)元,每生產(chǎn)一件產(chǎn)品成本增加100元,工廠每件產(chǎn)品的出廠價(jià)定為
元時(shí),生產(chǎn)
件產(chǎn)品的銷(xiāo)售收入是
(元),
為每天生產(chǎn)
件產(chǎn)品的平均利潤(rùn)(平均利潤(rùn)=總利潤(rùn)/總產(chǎn)量).銷(xiāo)售商從工廠每件
元進(jìn)貨后又以每件
元銷(xiāo)售,
,其中
為最高限價(jià)
,
為銷(xiāo)售樂(lè)觀系數(shù),據(jù)市場(chǎng)調(diào)查,
是由當(dāng)
是
,
的比例中項(xiàng)時(shí)來(lái)確定.
(1)每天生產(chǎn)量
為多少時(shí),平均利潤(rùn)
取得最大值?并求
的最大值;
(2)求樂(lè)觀系數(shù)
的值;
(3)若
,當(dāng)廠家平均利潤(rùn)最大時(shí),求
與
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
,下述四個(gè)結(jié)論:
①
是偶函數(shù);
②
的最小正周期為
;
③
的最小值為0;
④
在
上有3個(gè)零點(diǎn)
其中所有正確結(jié)論的編號(hào)是( )
A.①②B.①②③C.①③④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓
(a>b>0)的左焦點(diǎn)為F,上頂點(diǎn)為B. 已知橢圓的離心率為
,點(diǎn)A的坐標(biāo)為
,且
.
(I)求橢圓的方程;
(II)設(shè)直線l:
與橢圓在第一象限的交點(diǎn)為P,且l與直線AB交于點(diǎn)Q. 若
(O為原點(diǎn)) ,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱柱
的底面是菱形,
平面
,點(diǎn)
是側(cè)棱
上的點(diǎn)![]()
![]()
(1)證明:
平面
;
(2)若
是
的中點(diǎn),求四棱錐
的體積.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com