【題目】下列命題:①在線性回歸模型中,相關指數(shù)
表示解釋變量
對于預報變量
的貢獻率,
越接近于1,表示回歸效果越好;②兩個變量相關性越強,則相關系數(shù)的絕對值就越接近于1;③在回歸直線方程
中,當解釋變量
每增加一個單位時,預報變量
平均減少0.5個單位;④對分類變量
與
,它們的隨機變量
的觀測值
來說,
越小,“
與
有關系”的把握程度越大.其中正確命題的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=ex-ax-1.
(1)求f(x)的單調(diào)增區(qū)間;
(2)若f(x)在定義域R內(nèi)單調(diào)遞增,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐
,底面
為正方形,且
底面
,過
的平面與側(cè)面
的交線為
,且滿足
(
表示
的面積).
![]()
(1)證明:
平面
;
(2)當
時,二面角
的余弦值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
如圖,在四棱錐P—ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD=
,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點.
(Ⅰ)求證:PO⊥平面ABCD;
(Ⅱ)求異面直線PB與CD所成角的余弦值;
(Ⅲ)求點A到平面PCD的距離.![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心在坐標原點
,焦點在
軸上,短軸長為
,且兩個焦點和短軸的兩個端點恰為一個正方形的頂點,過右焦點
與
軸不垂直的直線交橢圓于
,
兩點.
(Ⅰ)求橢圓的方程.
(Ⅱ)當直線
的斜率為
時,求
的面積.
(Ⅲ)在線段
上是否存在點
,使得經(jīng)
,
為領邊的平行四邊形是菱形?若存在,求出
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)
,
是定義域為
的奇函數(shù).
(1)確定
的值;
(2)若
,函數(shù)
,
,求
的最小值;
(3)若
,是否存在正整數(shù)
,使得
對
恒成立?若存在,請求出所有的正整數(shù)
;若不存在,請說明理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com