如圖,ABCD為直角梯形,∠BCD=∠CDA=90°,AD=2BC=2CD,P為平面ABCD外一點(diǎn),且PB⊥BD.
(1) 求證:PA⊥BD;
(2) 若PC與CD不垂直,求證:PA≠PD.
![]()
證明:(1) 因?yàn)锳BCD為直角梯形,AD=
AB=
BD,
所以AD2=AB2+BD2,因此AB⊥BD.
又PB⊥BD,AB∩PB=B,AB,PB
平面PAB,
所以BD⊥平面PAB,
又PA
平面PAB,所以PA⊥BD.
(2) 假設(shè)PA=PD,取AD中點(diǎn)N,連結(jié)PN、BN,
則PN⊥AD,BN⊥AD,且PN∩BN=N,
所以AD⊥平面PNB,得PB⊥AD.
又PB⊥BD,且AD∩BD=D,得PB⊥平面ABCD,所以PB⊥CD.又因?yàn)锽C⊥CD,且PB∩BC=B,所以CD⊥平面PBC,所以CD⊥PC,與已知條件PC與CD不垂直矛盾,所以PA≠PD.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系xOy中,橢圓C:
=1(a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,動點(diǎn)M 為右準(zhǔn)線上一點(diǎn)(異于右準(zhǔn)線與x軸的交點(diǎn)),設(shè)線段FM交橢圓C于點(diǎn)P,已知橢圓C的離心率為
,點(diǎn)M的橫坐標(biāo)為
.
(1) 求橢圓C的標(biāo)準(zhǔn)方程;
(2) 設(shè)直線PA的斜率為k1,直線MA的斜率為k2,求k1·k2的取值范圍.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
現(xiàn)有一個關(guān)于平面圖形的命題:如圖所示,同一個平面內(nèi)有兩個邊長都是a的正方形,其中一個的某頂點(diǎn)在另一個的中心,則這兩個正方形重疊部分的面積恒為
.類比到空間,有兩個棱長均為a的正方體,其中一個的某頂點(diǎn)在另一個的中心,則這兩個正方體重疊部分的體積恒為________.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知a、b、c∈(0,+∞)且a<c,b<c,
+
=1,若以a、b、c為三邊構(gòu)造三角形,則c的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
用數(shù)學(xué)歸納法證明“當(dāng)n為正偶數(shù)時xn-yn能被x+y整除”第一步應(yīng)驗(yàn)證n=________時,命題成立;第二步歸納假設(shè)成立應(yīng)寫成____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列{bn}是等差數(shù)列,b1=1,b1+b2+…+b10=145.
(1) 求數(shù)列{bn}的通項(xiàng)公式bn;
(2) 設(shè)數(shù)列{an}的通項(xiàng)an=loga
(其中a>0且a≠1).記Sn是數(shù)列{an}的前n項(xiàng)和,試比較Sn與
logabn+1的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
一支足球隊(duì)每場比賽獲勝(得3分)的概率為a,與對手踢平(得1分)的概率為b,負(fù)于對手(得0分)的概率為c(a,b,c∈(0,1)),已知該足球隊(duì)進(jìn)行一場比賽得分的期望是1,則
的最小值為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
兩座相距60 m的建筑物AB、CD的高度分別為20 m、50 m,BD為水平面,則從建筑物AB的頂端A看建筑物CD的張角為__
______.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com