已知函數(shù)f(x)=6x–6x2,設(shè)函數(shù)g1(x)=f(x), g2(x)=f[g1(x)], g3(x)=f [g2(x)],…gn(x)=f[gn–1(x)],…
(1)求證:如果存在一個(gè)實(shí)數(shù)x0,滿足g1(x0)=x0,那么對(duì)一切n∈N,gn(x0)=x0都成立;
(2)若實(shí)數(shù)x0滿足gn(x0)=x0,則稱x0為穩(wěn)定不動(dòng)點(diǎn),試求出所有這些穩(wěn)定不動(dòng)點(diǎn);
(3)設(shè)區(qū)間A=(–∞,0),對(duì)于任意x∈A,有g1(x)=f(x)=a<0, g2(x)=f[g1(x)]=f(0)<0,
且n≥2時(shí),gn(x)<0
試問(wèn)是否存在區(qū)間B(A∩B≠
),對(duì)于區(qū)間內(nèi)任意實(shí)數(shù)x,只要n≥2,都有gn(x)<0.
(1)證明略, (2) 穩(wěn)定不動(dòng)點(diǎn)為0和
(3)只要n≥2,n∈N,都有gn(x)<0
(1)證明: 當(dāng)n=1時(shí),g1(x0)=x0顯然成立;
設(shè)n=k時(shí),有gk(x0)=x0(k∈N)成立,
則gk+1(x0)=f[gk(x0)]=f(x0)=g1(x0)=x0
即n=k+1時(shí),命題成立.
∴對(duì)一切n∈N,若g1(x0)=x0,則gn(x0)=x0.
(2)解:由(1)知,穩(wěn)定不動(dòng)點(diǎn)x0只需滿足f(x0)=x0
由f(x0)=x0,得6x0–6x02=x0,∴x0=0或x0=![]()
∴穩(wěn)定不動(dòng)點(diǎn)為0和
.
(3)解:∵f(x)<0,得6x–6x2<0
x<0或x>1.
∴gn(x)<0
f[gn–1(x)]<0
gn–1(x)<0或gn–1(x)>1
要使一切n∈N,n≥2,都有gn(x)<0,必須有g1(x)<0或g1(x)>1.
由g1(x)<0
6x–6x2<0
x<0或x>1
由g1(x)>0
6x–6x2>1![]()
![]()
故對(duì)于區(qū)間(
)和(1,+∞)內(nèi)的任意實(shí)數(shù)x,
只要n≥2,n∈N,都有gn(x)<0.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| π |
| 2 |
| π |
| 6 |
| 1 |
| 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| 3 |
| x |
| 2 |
| π |
| 4 |
| x |
| 2 |
| π |
| 4 |
| a |
| π |
| 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| 3 |
| 2 |
| 1 |
| 2 |
| π |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題
| 3 |
| 2 |
| 1 |
| 2 |
| π |
| 2 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com