【題目】已知
,記關(guān)于
的不等式
的解集為
.
(1)若
,求實數(shù)
的取值范圍;
(2)若
,求實數(shù)
的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一直函數(shù)
,其中![]()
(1)討論
的單調(diào)性
(2)設(shè)曲線
與
軸正半軸的交點為
,曲線在點
處的切線方程為
,求證:對于任意的正實數(shù)
,都有![]()
(3)若關(guān)于
的方程
(
為實數(shù))有兩個正實根
,求證:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工件的三視圖如圖所示,現(xiàn)將該工件通過切割,加工成一個體積盡可能大的長方體新工件,并使新工件的一個面落在原工件的一個面內(nèi),則原工件材料的利用率為(材料利用率=
)![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C:
+
=1,直線l:
(t為參數(shù))
(1)寫出曲線C的參數(shù)方程,直線l的普通方程.
(2)過曲線C上任意一點P作與l夾角為30°的直線,交l于點A,求|PA|的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形
為菱形,四邊形
為平行四邊形,設(shè)
與
相交于點
,
.![]()
(1)證明:平面
平面
;
(2)若
與平面
所成角為60°,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在(0,+∞)的函數(shù)f(x),其導(dǎo)函數(shù)為f′(x),滿足:f(x)>0且
總成立,則下列不等式成立的是( )
A.e2e+3f(e)<e2ππ3f(π)
B.e2e+3f(π)>e2ππ3f(e)
C.e2e+3f(π)<e2ππ3f(e)
D.e2e+3f(e)>e2ππ3f(π)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系的原點為極點,以x軸的正半軸為極軸建立極坐標(biāo)系.設(shè)曲線C的參數(shù)方程為
(α是參數(shù)),直線l的極坐標(biāo)方程為ρcos(θ+
)=2
.
(1)求直線l的直角坐標(biāo)方程和曲線C的普通方程;
(2)設(shè)點P為曲線C上任意一點,求點P到直線l的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為2的正方體ABCD﹣A1B1C1D1中,E為對角線B1D上的一點,M,N為對角線AC上的兩個動點,且線段MN的長度為1. ![]()
⑴當(dāng)N為對角線AC的中點且DE=
時,則三棱錐E﹣DMN的體積是;
⑵當(dāng)三棱錐E﹣DMN的體積為
時,則DE= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
,若f(x)﹣f(﹣x)=0有四個不同的根,則m的取值范圍是( )
A.(0,2e)
B.(0,e)
C.(0,1)
D.(0,
)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com