已知函數(shù)
為常數(shù),![]()
(1)當(dāng)
時(shí),求函數(shù)
在
處的切線方程;
(2)當(dāng)
在
處取得極值時(shí),若關(guān)于
的方程
在
上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)
的取值范圍;
(3)若對(duì)任意的
,總存在
,使不等式
成立,求實(shí)數(shù)
的取值范圍。
(1)
(2) ![]()
(3) ![]()
解析試題分析:(1)
時(shí),![]()
,于是
,又
,即切點(diǎn)為(![]()
切線方程為
—————————————————————————5分
(2)
,
,即
,![]()
此時(shí),
,
上減,
上增,
又![]()
———————————————————————————10分
(3)![]()
![]()
,即
(
在
上增,![]()
只須
————————————————12分
(法一)設(shè)![]()
![]()
又![]()
![]()
在1的右側(cè)需先增,![]()
設(shè)
,對(duì)稱軸![]()
又
,![]()
在
上,
,即![]()
在
上單調(diào)遞增,![]()
即
,
于是![]()
——————————————————-15分
(法二)![]()
![]()
設(shè)![]()
,![]()
![]()
設(shè)
,![]()
在
上增,又
,![]()
,即
,
在
上增
又![]()
![]()
數(shù)學(xué) 選修1B模塊答案
題號(hào):03答案
(1)法一:由柯西不等式知:![]()
——————————————————5分
法二:![]()
相加得:![]()
——————————————————————5分
法三:令![]()
![]()
![]()
![]()
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分14分) 定義在
上的函數(shù)
同時(shí)滿足以下條件:
①
在
上是減函數(shù),在
上是增函數(shù);②
是偶函數(shù);
③
在
處的切線與直線
垂直.
(1)求函數(shù)
的解析式;
(2)設(shè)
,求函數(shù)
在
上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(Ⅰ)當(dāng)
時(shí),求
的單調(diào)區(qū)間;
(Ⅱ)若對(duì)任意
,
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
在一個(gè)周期內(nèi)的部分函數(shù)圖象如圖所示,(I)求函數(shù)
的解析式;(Ⅱ)求函數(shù)
在區(qū)間
上的最大值和最小值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù)
(a∈R且
).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對(duì)于任意t∈[1,2],函數(shù)
在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
是定義在
上的奇函數(shù),且當(dāng)
時(shí),
.
(Ⅰ)求
的解析式;
(Ⅱ)直接寫出
的單調(diào)區(qū)間(不需給出演算步驟);
(Ⅲ)求不等式
解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)![]()
(1)求它的定義域,值域和單調(diào)區(qū)間;
(2)判斷它的奇偶性和周期性。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知
令
.
(1)求
的表達(dá)式;
(2)若函數(shù)
和函數(shù)
的圖象關(guān)于原點(diǎn)對(duì)稱,
(。┣蠛瘮(shù)
的解析式;
(ⅱ)若
在區(qū)間
上是增函數(shù),求實(shí)數(shù)l的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分8分)已知函數(shù)
.
(1)求證:函數(shù)
在
上為增函數(shù);
(2)當(dāng)函數(shù)
為奇函數(shù)時(shí),求
的值;
(3)當(dāng)函數(shù)
為奇函數(shù)時(shí), 求函數(shù)
在
上的值域.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com