已知函數(shù)
(
)
(1)討論函數(shù)
的單調(diào)性;
(2)若函數(shù)
在
處取得極值,不等式
對任意
恒成立,求實數(shù)
的取值范圍;
(3)當(dāng)
時,證明不等式
.
(1)
在
上單調(diào)遞減,在
上單調(diào)遞增;(2)
;(3)見解析
解析試題分析:(1)求導(dǎo)數(shù),對參數(shù)
進行分類討論,當(dāng)導(dǎo)函數(shù)大于0時,得到增區(qū)間,導(dǎo)函數(shù)小于0時得到減區(qū)間。(2)含參數(shù)不等式恒成立問題,一般要把要求參數(shù)分離出來,然后討論分離后剩下部分的最值即可。討論最值的時候要利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性。(3)證明不等式可以有很多方法,但本題中要利用(1)(2)的結(jié)論。構(gòu)造函數(shù),然后利用函數(shù)單調(diào)性給予證明。
試題解析:(1)
函數(shù)
的定義域為
,
1分
當(dāng)
時,
,從而
,故函數(shù)
在
上單調(diào)遞減 3分
當(dāng)
時,若
,則
,從而
,
若
,則
,從而
,
故函數(shù)
在
上單調(diào)遞減,在
上單調(diào)遞增; 5分
(2)由(1)得函數(shù)
的極值點是
,故
6分
所以
,即
,
由于
,即
. 7分
令
,則![]()
當(dāng)
時,
;當(dāng)
時,![]()
∴
在
上單調(diào)遞減,在
上單調(diào)遞增; 9分
故
,所以實數(shù)
的取值范圍為
10分
(3)不等式
11分
構(gòu)造函數(shù)
,則
,
在
上恒成立,即函數(shù)
在
上單調(diào)遞增, 13分
由于
,所以
,得![]()
故
14分
考點:1、多項式函數(shù)求導(dǎo);2、利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,最值以及證明不等式的綜合應(yīng)用。
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(
).
(1)當(dāng)
時,求
的圖象在
處的切線方程;
(2)若函數(shù)
在
上有兩個零點,求實數(shù)
的取值范圍;
(3)若函數(shù)
的圖象與
軸有兩個不同的交點
,且
,求證:
(其中
是
的導(dǎo)函數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
在
與
處都取得極值.
(1)求
,
的值;
(2)設(shè)函數(shù)
,若對任意的
,總存在
,使得、
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義在R上的函數(shù)f(x)=-2x3+bx2+cx(b,c∈R),函數(shù)F(x)=f(x)-3x2是奇函數(shù),函數(shù)f(x)滿足
.
(1)求f(x)的解析式;
(2)討論f(x)在區(qū)間(-3,3)上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
(1)求
的單調(diào)遞減區(qū)間;
(2)若
在區(qū)間
上的最大值為20,求它在該區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
是
的導(dǎo)函數(shù),
,且函數(shù)
的圖象過點
.
(1)求函數(shù)
的表達式;
(2)求函數(shù)
的單調(diào)區(qū)間和極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
在
上為增函數(shù),
,![]()
(1)求
的值;
(2)當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間和極值;
(3)若在
上至少存在一個
,使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知f(x)=ex-t(x+1).
(1)若f(x)≥0對一切正實數(shù)x恒成立,求t的取值范圍;
(2)設(shè)
,且A(x1,y1)、B(x2,y2)(x1≠x2)是曲線y=g(x)上任意兩點,若對任意的t≤-1,直線AB的斜率恒大于常數(shù)m,求m的取值范圍;
(3)求證:
(n∈N*).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com