【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
(α為參數(shù)),直線l的參數(shù)方程為
(t為參數(shù)),在以坐標(biāo)原點O為極點,x軸為正半軸為極軸的極坐標(biāo)系中,過極點O的射線與曲線C相交于不同于極點的點A,且點A的極坐標(biāo)為(2
,θ),其中θ∈(
,π)
(Ⅰ)求θ的值;
(Ⅱ)若射線OA與直線l相交于點B,求|AB|的值.
【答案】解:(Ⅰ)曲線C的參數(shù)方程為
(α為參數(shù)),普通方程為x2+(y﹣2)2=4,極坐標(biāo)方程為ρ=4sinθ,
∵點A的極坐標(biāo)為(2
,θ),θ∈(
,π),∴θ=
;
(Ⅱ)直線l的參數(shù)方程為
(t為參數(shù)),普通方程為x+
y﹣4
=0,
點A的直角坐標(biāo)為(﹣
,3),射線OA的方程為y=﹣
x,
代入x+
y﹣4
=0,可得B(﹣2
,6),∴|AB|=
=2
.
【解析】(Ⅰ)曲線C的極坐標(biāo)方程,利用點A的極坐標(biāo)為(2
,θ),θ∈(
,π),即可求θ的值;(Ⅱ)若射線OA與直線l相交于點B,求出A,B的坐標(biāo),即可求|AB|的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點
在拋物線
上,則當(dāng)點
到點
的距離與點
到拋物線焦點距離之和取得最小值時,點
的坐標(biāo)為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=
x3+ax(a∈R),且曲線f(x)在x=
處的切線與直線y=﹣
x﹣1平行.
(Ⅰ)求a的值及函數(shù)f(x)的解析式;
(Ⅱ)若函數(shù)y=f(x)﹣m在區(qū)間[﹣3,
]上有三個零點,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax(a>0,a≠1)的反函數(shù)的圖象經(jīng)過點(
,
).若函數(shù)g(x)的定義域為R,當(dāng)x∈[﹣2,2]時,有g(shù)(x)=f(x),且函數(shù)g(x+2)為偶函數(shù),則下列結(jié)論正確的是( )
A.g(π)<g(3)<g(
)
B.g(π)<g(
)<g(3)??
C.g(
)<g(3)<g(π)
D.g(
)<g(π)<g(3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知梯形CDEF與△ADE所在平面垂直,AD⊥DE,CD⊥DE,AB∥CD∥EF,AE=2DE=8,AB=3,EF=9.CD=12,連接BC,BF. ![]()
(Ⅰ)若G為AD邊上一點,DG=
DA,求證:EG∥平面BCF;
(Ⅱ)求二面角E﹣BF﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過雙曲線
的右支上的一點P作一直線l與兩漸近線交于A、B兩點,其中P是AB的中點;
(1)求雙曲線的漸近線方程;
(2)當(dāng)P坐標(biāo)為(x0 , 2)時,求直線l的方程;
(3)求證:|OA||OB|是一個定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn , 若Sm﹣1=﹣4,Sm=0,Sm+2=14(m≥2,且m∈N*).
(1)求m的值;
(2)若數(shù)列{bn}滿足
=logabn(n∈N*),求數(shù)列{(an+6)bn}的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左、右焦點分別為F1(-c,0),F(xiàn)2(c,0),直線
交橢圓E于A,B兩點,△ABF1的周長為16,△AF1F2的周長為12.
(1)求橢圓E的標(biāo)準(zhǔn)方程與離心率;
(2)若直線l與橢圓E交于C,D兩點,且P(2,2)是線段CD的中點,求直線l的一般方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com