【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)),以原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,圓
上有一點(diǎn)
,且點(diǎn)
,
的極坐標(biāo)分別為
,
.
(1)求圓
的直角坐標(biāo)方程及直線
的普通方程;
(2)設(shè)直線
與坐標(biāo)軸的兩個(gè)交點(diǎn)分別為
,
,點(diǎn)
在圓
上運(yùn)動(dòng),求
面積的最大值.
【答案】(1)圓
的直角坐標(biāo)方程為
.直線
的普通方程為
.(2)![]()
【解析】
(1)先將極坐標(biāo)化為直角坐標(biāo),再根據(jù)標(biāo)準(zhǔn)式的圓方程,消去參數(shù)可得直線普通方程,(2)根據(jù)圓的性質(zhì)可得圓
上點(diǎn)到直線的距離的最大值即為圓心到直線的距離與半徑之和,再根據(jù)面積公式得結(jié)果.
解:(1)因?yàn)辄c(diǎn)
的直角坐標(biāo)為
,
圓心
的直角坐標(biāo)為
,
所以圓
的半徑
,
所以圓
的直角坐標(biāo)方程為
.
由直線
的參數(shù)方程
,消去參數(shù)
,得
,
故直線
的普通方程為
.
(2)在直線
:
中,
令
,得
;令
,得
,
所以不妨設(shè)
,
,所以
.
又圓
上點(diǎn)到直線的距離的最大值即為圓心
到直線的距離與半徑之和,
設(shè)圓心
到直線
的距離為
,
所以
,
所以圓
上的點(diǎn)到直線
的距離的最大值為
,
所以
面積的最大值為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:多面體
中,四邊形
為矩形,二面角
為60°,
,
,
,
,
.
![]()
(1)求證:
平面
;
(2)
線段
上一點(diǎn),若銳二面角
的正弦值為
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
O
中,直線
與拋物線
=2
相交于A、B兩點(diǎn).
(1)求證:命題“如果直線
過(guò)點(diǎn)T(3,0),那么
=3”是真命題;
(2)寫(xiě)出(1)中命題的逆命題,判斷它是真命題還是假命題,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)方形
中,
,
是
中點(diǎn)(圖1).將△
沿
折起,使得
(圖2)在圖2中:
![]()
(1)求證:平面
平面
;
(2)在線段
上是否存點(diǎn)
,使得二面角
為大小為
,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校高一年級(jí)學(xué)生某次身體素質(zhì)體能測(cè)試的原始成績(jī)采用百分制,已知所有這些學(xué)生的原始成績(jī)均分布在
內(nèi),發(fā)布成績(jī)使用等級(jí)制各等級(jí)劃分標(biāo)準(zhǔn)見(jiàn)下表,規(guī)定:
、
、
三級(jí)為合格等級(jí),
為不合格等級(jí).
百分制 |
|
|
|
|
等級(jí) |
|
|
|
|
為了解該校高一年級(jí)學(xué)生身體素質(zhì)情況,從中抽取了
名學(xué)生的原始成績(jī)作為樣本進(jìn)行統(tǒng)計(jì),按照
的分組作出頻率分布直方圖如圖
所示,樣本中分?jǐn)?shù)在
分及以上的所有數(shù)據(jù)的莖葉圖如圖
所示.
![]()
(1)求
和頻率分布直方圖中的
的值;
(2)根據(jù)樣本估計(jì)總體的思想,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若在該校高一學(xué)生任選
人,求至少有
人成績(jī)是合格等級(jí)的概率;
(3)在選取的樣本中,從
、
兩個(gè)等級(jí)的學(xué)生中隨機(jī)抽取了
名學(xué)生進(jìn)行調(diào)研,記
表示所抽取的
名學(xué)生中為
等級(jí)的學(xué)生人數(shù),求隨機(jī)變量
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形
為平行四邊形,
平面
,且
是
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)求二面角
的余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax-3lnx(a為常數(shù))與函數(shù)g(x)=
-xlnx在x=1處的切線互相平行.
(1)求a的值;
(2)求函數(shù)y=f(x)在[1,2]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人有樓房一幢,室內(nèi)總面積為
,擬分割成兩類房間作為旅游客房,有關(guān)的數(shù)據(jù)如下表:
大房間 | 小房間 | |
每間的面積 |
|
|
每間裝修費(fèi) |
| 6000元 |
每天每間住人數(shù) | 5人 | 3人 |
每天每人住宿費(fèi) | 80元 | 100元 |
如果他只能籌款80000元用于裝修,且游客能住滿客房,他應(yīng)隔出大房間和小房間各多少間,能獲得的住宿總收入最多?每天獲得的住宿總收入最多是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的左、右焦點(diǎn)分別為
,
,離心率為
,過(guò)右焦點(diǎn)
作直線
交橢圓
于
,
兩點(diǎn),
的周長(zhǎng)為
,點(diǎn)
.
(1)求橢圓
的方程;
(2)設(shè)直線
、
的斜率
,
,請(qǐng)問(wèn)
是否為定值?若是定值,求出其定值;若不是,說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com