已知A,B兩點(diǎn)在拋物線C:x2=4y上,點(diǎn)M(0,4)滿足
=λ
.
(1)求證:
;
(2)設(shè)拋物線C過A、B兩點(diǎn)的切線交于點(diǎn)N.
(ⅰ)求證:點(diǎn)N在一條定直線上;
(ⅱ)設(shè)4≤λ≤9,求直線MN在x軸上截距的取值范圍.
(1)證明:∵
=0,∴
.
(2)(ⅰ)點(diǎn)N(
,-4),所以點(diǎn)N在定直線y=-4上. (ⅱ) [-
,-
]∪[
,
].
解析試題分析:設(shè)A(x1,y1),B(x2,y2),
lAB:y=kx+4與x2=4y聯(lián)立得x2-4kx-16=0,
Δ=(-4k)2-4(-16)=16k2+64>0,
x1+x2=4k,x1x2=-16, 2分
(1)證明:∵
=x1x2+y1y2=x1x2+(kx1+4)(kx2+4)
=(1+k2)x1x2+4k(x1+x2)+16
=(1+k2)(-16)+4k(4k)+16=0
∴
. 4分
(2)(ⅰ)證明:過點(diǎn)A的切線:
y=
x1(x-x1)+y1=
x1x-
x12, ①
過點(diǎn)B的切線:y=
x2x-
x22, 、 6分
聯(lián)立①②得點(diǎn)N(
,-4),所以點(diǎn)N在定直線y=-4上. 8分
(ⅱ)∵
=λ
,
∴(x1,y1-4)=λ(-x2,4-y2),
聯(lián)立x1=-λx2,x1+x2=4k,x1x2=-16,
可得k2=
=λ+
-2,4≤λ≤9, 11分
∴
≤k2≤
.
直線MN:y=
x+4在x軸上的截距為k.
∴直線MN在x軸上截距的取值范圍是[-
,-
]∪[
,
]. 14分
考點(diǎn):本題考查了向量的運(yùn)用及直線與拋物線的位置關(guān)系
點(diǎn)評:熟練掌握向量的坐標(biāo)運(yùn)算,靈活運(yùn)用直線的特征是解決此類問題的關(guān)鍵,屬?碱}型
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
是橢圓的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P
在橢圓上,線段
與y軸的交點(diǎn)M滿足![]()
(Ⅰ) 求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ) 圓O是以
為直徑的圓,直線
:
與圓相切,并與橢圓交于不同的兩點(diǎn)
,當(dāng)
,且滿足
時(shí),求直線
的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線
的焦點(diǎn)為
,經(jīng)過點(diǎn)
的動(dòng)直線
交拋物線
于點(diǎn)
,
且
.
(1)求拋物線
的方程;
(2)若
(
為坐標(biāo)原點(diǎn)),且點(diǎn)
在拋物線
上,求直線
傾斜角;
(3)若點(diǎn)
是拋物線
的準(zhǔn)線上的一點(diǎn),直線
的斜率分別為
.求證:
當(dāng)
為定值時(shí),
也為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在平面直角坐標(biāo)系
中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為
,右頂點(diǎn)為
,設(shè)點(diǎn)
.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若
是橢圓上的動(dòng)點(diǎn),求線段
中點(diǎn)
的軌跡方程;
(3)過原點(diǎn)
的直線交橢圓于點(diǎn)
,求
面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓
:
的左、右焦點(diǎn)分別為
,已知橢圓
上的任意一點(diǎn)
,滿足
,過
作垂直于橢圓長軸的弦長為3.![]()
(1)求橢圓
的方程;
(2)若過
的直線交橢圓于
兩點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
求滿足下列條件的橢圓方程長軸在
軸上,長軸長等于12,離心率等于
;橢圓經(jīng)過點(diǎn)
;橢圓的一個(gè)焦點(diǎn)到長軸兩端點(diǎn)的距離分別為10和4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
直角坐標(biāo)平面上,
為原點(diǎn),
為動(dòng)點(diǎn),
,
. 過點(diǎn)
作
軸于
,過
作
軸于點(diǎn)
,
. 記點(diǎn)
的軌跡為曲線
,
點(diǎn)
、
,過點(diǎn)
作直線
交曲線
于兩個(gè)不同的點(diǎn)
、
(點(diǎn)
在
與
之間).
(1)求曲線
的方程;
(2)是否存在直線
,使得
,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的中心在原點(diǎn),焦點(diǎn)在
軸上,一條經(jīng)過點(diǎn)
且方向向量為
的直線
交橢圓
于
兩點(diǎn),交
軸于
點(diǎn),且
.![]()
(1)求直線
的方程;
(2)求橢圓
長軸長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知圓
的圓心為原點(diǎn)
,且與直線
相切。![]()
(1)求圓
的方程;
(2)點(diǎn)
在直線
上,過
點(diǎn)引圓
的兩條切線
,切點(diǎn)為
,求證:直線
恒過定點(diǎn)。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com