(本小題共14分)
已知橢圓
的離心率為![]()
(I)若原點(diǎn)到直線
的距離為
求橢圓的方程;
(II)設(shè)過橢圓的右焦點(diǎn)且傾斜角為
的直線
和橢圓交于A,B兩點(diǎn).
(i)當(dāng)
,求b的值;
(ii)對于橢圓上任一點(diǎn)M,若
,求實(shí)數(shù)
滿足的關(guān)系式.
(I)![]()
(II)(i)1
(ii)![]()
(I)
![]()
解得![]()
橢圓的方程為
…………………………………………4分
(II)(i)
橢圓的方程可化為:
①
易知右焦點(diǎn)
,據(jù)題意有AB:
②
由①,②有:
③
設(shè)
,
![]()
…………………………………………………………8分
(ii)顯然
與
可作為平面向量的一組基底,由平面向量基本定理,對于這一平面內(nèi)的向量
,有且只有一對實(shí)數(shù)λ,μ,使得等
成立.
設(shè)M(x,y),
![]()
又點(diǎn)M在橢圓上,
④
由③有:![]()
則![]()
⑤
又A,B在橢圓上,故有
⑥
將⑥,⑤代入④可得:
………………………………14分
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題共14分)
數(shù)列
的前n項(xiàng)和為
,點(diǎn)
在直線![]()
上.
(I)求證:數(shù)列
是等差數(shù)列;
(II)若數(shù)列
滿足
,求數(shù)列
的前n項(xiàng)和![]()
(III)設(shè)
,求證:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題共14分)
如圖,四棱錐
的底面是正方形,
,點(diǎn)E在棱PB上。
![]()
(Ⅰ)求證:平面
;
(Ⅱ)當(dāng)
且E為PB的中點(diǎn)時,求AE與平面PDB所成的角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009北京理)(本小題共14分)
已知雙曲線
的離心率為
,右準(zhǔn)線方程為![]()
(Ⅰ)求雙曲線
的方程;
(Ⅱ)設(shè)直線
是圓
上動點(diǎn)
處的切線,
與雙曲線
交
于不同的兩點(diǎn)
,證明
的大小為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆度廣東省高二上學(xué)期11月月考理科數(shù)學(xué)試卷 題型:解答題
(本小題共14分)在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD
底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),作EF
PB交PB于點(diǎn)F
⑴求證:PA//平面EDB
⑵求證:PB
平面EFD
⑶求二面角C-PB-D的大小
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年北京市崇文區(qū)高三下學(xué)期二模數(shù)學(xué)(文)試題 題型:解答題
(本小題共14分)
正方體
的棱長為
,
是
與
的交點(diǎn),
為
的中點(diǎn).
(Ⅰ)求證:直線
∥平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)求三棱錐
的體積.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com