如圖,
是橢圓
的左、右頂點(diǎn),橢圓
的離心率為
,右準(zhǔn)線
的方程為
.![]()
(1)求橢圓方程;
(2)設(shè)
是橢圓
上異于
的一點(diǎn),直線
交
于點(diǎn)
,以
為直徑的圓記為
. ①若
恰好是橢圓
的上頂點(diǎn),求
截直線
所得的弦長(zhǎng);
②設(shè)
與直線
交于點(diǎn)
,試證明:直線
與
軸的交點(diǎn)
為定點(diǎn),并求該定點(diǎn)的坐標(biāo).
(1)
(2) ①
②![]()
解析試題分析:(1)求橢圓方程,基本方法是待定系數(shù)法.關(guān)鍵是找全所需條件. 橢圓中
三個(gè)未知數(shù)的確定只需兩個(gè)獨(dú)立條件,由
可得
值,(2) ①求圓被直線所截得弦長(zhǎng)時(shí),利用半徑、半弦長(zhǎng)、圓心到直線距離三者成勾股列等量關(guān)系,先分別確定直線
的方程
與圓K的方程
,②證明直線
與
軸的交點(diǎn)
為定點(diǎn),實(shí)質(zhì)為求直線
與
軸的交點(diǎn).由①知,點(diǎn)
是關(guān)鍵點(diǎn),不妨設(shè)點(diǎn)
的坐標(biāo)作為參數(shù),先表示直線
的方程,與圓的方程聯(lián)立解出點(diǎn)P的坐標(biāo).由
得直線
的斜率,從而得直線
的方程,再令
,得點(diǎn)R的橫坐標(biāo)為
,利用點(diǎn)M滿足
化簡(jiǎn)得![]()
試題解析:(1)由
,解得
,故![]()
![]()
(2)①因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ec/0/8mtqp3.png" style="vertical-align:middle;" />,所以直線
的方程為
,
從而
的方程為
6分
又直線
的方程為
,故圓心到直線
的距離為
8分
從而
截直線
所得的弦長(zhǎng)為
9分
②證:設(shè)
,則直線
的方程為
,則點(diǎn)P的坐標(biāo)為
,
又直線
的斜率為
,而
,
所以
,從而直線
的方程為
12分
令
,得點(diǎn)R的橫坐標(biāo)為
13分
又點(diǎn)M在橢圓上,所以
,即
,故
,
所以直線
與
軸的交點(diǎn)
為定點(diǎn),且該定點(diǎn)的坐標(biāo)為
15分
考點(diǎn):橢圓方程,直線與圓錐曲線位置關(guān)系,圓的弦長(zhǎng)
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn).
(1)求橢圓C的方程;
(2)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點(diǎn),且直線OA與l的距離等于4?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)A(x1,y1),B(x2,y2)是橢圓C:
=1(a>b>0)上兩點(diǎn),已知m=
,n=
,若m·n=0且橢圓的離心率e=
,短軸長(zhǎng)為2,O為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)試問△AOB的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:
=1(a>b>0)的離心率為
,其左、右焦點(diǎn)分別是F1、F2,過點(diǎn)F1的直線l交橢圓C于E、G兩點(diǎn),且△EGF2的周長(zhǎng)為4
.
(1)求橢圓C的方程;
(2)若過點(diǎn)M(2,0)的直線與橢圓C相交于兩點(diǎn)A、B,設(shè)P為橢圓上一點(diǎn),且滿足
+
=t
(O為坐標(biāo)原點(diǎn)),當(dāng)|
-
|<
時(shí),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線
,點(diǎn)
,過
的直線
交拋物線
于
兩點(diǎn).
(1)若
,拋物線
的焦點(diǎn)與
中點(diǎn)的連線垂直于
軸,求直線
的方程;
(2)設(shè)
為小于零的常數(shù),點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn)為
,求證:直線
過定點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線
的頂點(diǎn)在坐標(biāo)原點(diǎn)
,對(duì)稱軸為
軸,焦點(diǎn)為
,拋物線上一點(diǎn)
的橫坐標(biāo)為2,且
.
(1)求拋物線的方程;
(2)過點(diǎn)
作直線
交拋物線于
,
兩點(diǎn),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
拋物線
在點(diǎn)
,
處的切線垂直相交于點(diǎn)
,直線
與橢圓
相交于
,
兩點(diǎn).![]()
(1)求拋物線
的焦點(diǎn)
與橢圓
的左焦點(diǎn)
的距離;
(2)設(shè)點(diǎn)
到直線
的距離為
,試問:是否存在直線
,使得
,
,
成等比數(shù)列?若存在,求直線
的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:
的左、右焦點(diǎn)和短軸的一個(gè)端點(diǎn)構(gòu)成邊長(zhǎng)為4的正三角形.
(1)求橢圓C的方程;
(2)過右焦點(diǎn)
的直線
與橢圓C相交于A、B兩點(diǎn),若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系
中,已知拋物線
,設(shè)點(diǎn)
,
,
為拋物線
上的動(dòng)點(diǎn)(異于頂點(diǎn)),連結(jié)
并延長(zhǎng)交拋物線
于點(diǎn)
,連結(jié)
、
并分別延長(zhǎng)交拋物線
于點(diǎn)
、
,連結(jié)
,設(shè)
、
的斜率存在且分別為
、
.![]()
(1)若
,
,
,求
;
(2)是否存在與
無關(guān)的常數(shù)
,是的
恒成立,若存在,請(qǐng)將
用
、
表示出來;若不存在請(qǐng)說明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com