欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

18.已知$\overrightarrow a$=(x-$\sqrt{2}$,y),$\overrightarrow b$=(x+$\sqrt{2}$,y).動(dòng)點(diǎn)M(x,y)滿足$|{\overrightarrow a}|+|{\overrightarrow b}|$=2$\sqrt{3}$
(1)求點(diǎn)M的軌跡C的方程;
(2)直線l與C交于A,B兩點(diǎn),坐標(biāo)原點(diǎn)O到l得距離為$\frac{{\sqrt{3}}}{2}$,求△ABO面積的最大值.

分析 (1)由|$\overrightarrow a$|+|$\overrightarrow b$|=${\sqrt{{{(x-\sqrt{2})}^2}+{y^2}}^{\;}}$+$\sqrt{{{({x+\sqrt{2}})}^2}+{y^2}}$=$2\sqrt{3}$知?jiǎng)狱c(diǎn)M是以($\sqrt{2}$,0),($\sqrt{2}$,0)為焦點(diǎn)的橢圓,即可求出軌跡方程.
(2)設(shè)為y=kx+m,由O到L的距離為$\frac{{\sqrt{3}}}{2}$得:$\frac{{\left|{m\left.{\;}\right|}\right.}}{{\sqrt{1+{k^2}}}}$=$\frac{{\sqrt{3}}}{2}$即${m^2}=\frac{3}{4}({1+{k^2}})$,設(shè)A(x1,y1)B(x2,y2),可得|AB|2=(1+k2)(x2-x12=(1+k2)[(-$\frac{6km}{{3{k^2}+1}}$)2-4$\frac{{3({m^2}-1)}}{{3{k^2}+1}}$]=3+$\frac{{12{k^2}}}{{9{k^4}+6{k^2}+1}}$=3+$\frac{12}{{9{k^2}+\frac{1}{k^2}+6}}$≤3+1=4,當(dāng)|AB|取最大時(shí),△AOB面積S最大.

解答 (1)由|$\overrightarrow a$|+|$\overrightarrow b$|=${\sqrt{{{(x-\sqrt{2})}^2}+{y^2}}^{\;}}$+$\sqrt{{{({x+\sqrt{2}})}^2}+{y^2}}$=$2\sqrt{3}$知?jiǎng)狱c(diǎn)M是以
(-$\sqrt{2}$,0),($\sqrt{2}$,0)為焦點(diǎn)的橢圓…(3分)
記該橢圓的長(zhǎng)短半軸分別為a,b,半焦距為C,則a=$\sqrt{3}$b=1∴C:$\frac{x^2}{3}+{y^2}=1$(6分)
(2)由題知L的斜率存在,故可設(shè)為y=kx+m,
 由O到L的距離為$\frac{{\sqrt{3}}}{2}$得:$\frac{{\left|{m\left.{\;}\right|}\right.}}{{\sqrt{1+{k^2}}}}$=$\frac{{\sqrt{3}}}{2}$即${m^2}=\frac{3}{4}({1+{k^2}})$…(8分)
將y=kx+m代入$\frac{x^2}{3}+{y^2}=1$整理得(3k2+1)x2+6kmx+3m2-3=0 設(shè)A(x1,y1)B(x2,y2
則x1+x2=-$\frac{6km}{{3{k^2}+1}}$,x1x2=$\frac{{3({m^2}-1)}}{{3{k^2}+1}}$.
而|AB|2=(1+k2)(x2-x12=(1+k2)[(-$\frac{6km}{{3{k^2}+1}}$)2-4$\frac{{3({m^2}-1)}}{{3{k^2}+1}}$]=3+$\frac{{12{k^2}}}{{9{k^4}+6{k^2}+1}}$=3+$\frac{12}{{9{k^2}+\frac{1}{k^2}+6}}$≤3+1=4 
當(dāng)且僅當(dāng)k=±$\frac{{\sqrt{3}}}{3}$|AB|max=2,…(10分)
∴當(dāng)|AB|取最大時(shí),△AOB面積S最大,Smax=$\frac{1}{2}$|AB|max×$\frac{{\sqrt{3}}}{2}$=$\frac{{\sqrt{3}}}{2}$…(12分)

點(diǎn)評(píng) 本題考查了軌跡方程的求解,直線與圓的位置關(guān)系,屬于中檔題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)集合A={-2},B={x|ax+1=0},若A∩B=B,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=x3+ax2+bx+c在x=-$\frac{2}{3}$,x=1處都取得極值
(1)求a,b的值與函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若對(duì)x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在△ABC中,已知a、b、c分別表示∠A、∠B、∠C所對(duì)邊的長(zhǎng),若$(a+b+c)(c+b-a)=(2-\sqrt{3})bc$,則∠A=( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知$2sin\frac{x}{2}-cos\frac{x}{2}=0$.
(1)求tanx;
(2)求$\frac{cos2x}{{\sqrt{2}cos({\frac{π}{4}+x})sinx}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知數(shù)列{an}滿足a1=1,2${\;}^{{a}_{n+1}}$=3×2${\;}^{{a}_{n}}$+2(n∈N*),若an>4log23恒成立,則n的最小值為( 。
A.8B.7C.6D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知點(diǎn)F1,F(xiàn)2,分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn),其上頂點(diǎn)為A,且△AF1F2是斜邊長(zhǎng)為2的等腰直角三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)過(guò)點(diǎn)F2,斜率為k的直線l交橢圓C于點(diǎn)D,E,交y軸于點(diǎn)P(如圖),問(wèn):是否存在實(shí)數(shù)k,使得△ODF2與△OPE的面積相等,如果存在,求出k的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.一個(gè)直角梯形的面積為2,在斜二測(cè)畫法下,它的直觀圖面積為$\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)函數(shù)$f(x)=2\sqrt{3}sinxcosx+2{cos^2}x+a-1(a∈R,a是常數(shù))$
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)$若f(x)在[{-\frac{π}{4},\frac{π}{4}}]上的最大值與最小值之和為\sqrt{3},求實(shí)數(shù)a的值$.

查看答案和解析>>

同步練習(xí)冊(cè)答案