【題目】如圖,三棱錐D-ABC中,![]()
![]()
,E,F分別為DB,AB的中點(diǎn),且
.
![]()
(1)求證:平面
平面ABC;
(2)求二面角D-CE-F的余弦值.
【答案】(1)證明見解析;(2)
.
【解析】
(1)取
的中點(diǎn)
,可得
,
,從而得到
平面
,得到
,由
,
,得到
,從而得到
平面
,所以平面
平面
;(2)以
為原點(diǎn),建立空間直角坐標(biāo)系,利用余弦定理和勾股定理,得到
,
,得到
的法向量
,平面
的法向量
,根據(jù)向量夾角的余弦公式,得到二面角
的余弦值
(1)如圖取
的中點(diǎn)
,連接
,
,
![]()
因?yàn)?/span>
,所以
,
因?yàn)?/span>
,所以
,
又因?yàn)?/span>
,所以
平面
,
平面![]()
所以
.
因?yàn)?/span>
,
分別為
,
的中點(diǎn),所以
.
因?yàn)?/span>
,即
,
則
.
又因?yàn)?/span>
,
所以
平面
,
又因?yàn)?/span>
平面DAB,
所以平面
平面
.
(2)因?yàn)?/span>
平面
,則以
為坐標(biāo)原點(diǎn),
過(guò)點(diǎn)
與
垂直的直線為
軸,
為
軸,AD為
軸,
建立如下圖所示的空間直角坐標(biāo)系.
![]()
因?yàn)?/span>![]()
![]()
,
在
中,
![]()
![]()
,
所以
.
在
中,![]()
,
所以點(diǎn)
,![]()
![]()
,
![]()
.
設(shè)平面
的法向量為![]()
![]()
.
所以
,即
,
可取
.
設(shè)平面
的法向量為![]()
![]()
.
所以
,即
,
可取
,
則![]()
![]()
因?yàn)槎娼?/span>
為鈍二面角,所以二面角
的余弦值為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車生產(chǎn)廠家為了解某型號(hào)電動(dòng)汽車的“實(shí)際平均續(xù)航里程數(shù)”,收集了使用該型號(hào)電動(dòng)汽車
年以上的部分客戶的相關(guān)數(shù)據(jù),得到他們的電動(dòng)汽車的“實(shí)際平均續(xù)航里程數(shù)”.從年齡在40歲以下的客戶中抽取10位歸為A組,從年齡在40歲(含40歲)以上的客戶中抽取10位歸為B組,將他們的電動(dòng)汽車的“實(shí)際平均續(xù)航里程數(shù)”整理成下圖,其中“+”表示A組的客戶,“⊙”表示B組的客戶.
注:“實(shí)際平均續(xù)航里程數(shù)”是指電動(dòng)汽車的行駛總里程與充電次數(shù)的比值.
(Ⅰ)記A,B兩組客戶的電動(dòng)汽車的“實(shí)際平均續(xù)航里程數(shù)”的平均值分別為
,
,根據(jù)圖中數(shù)據(jù),試比較
,
的大。ńY(jié)論不要求證明);
(Ⅱ)從A,B兩組客戶中隨機(jī)抽取2位,求其中至少有一位是A組的客戶的概率;
(III)如果客戶的電動(dòng)汽車的“實(shí)際平均續(xù)航里程數(shù)”不小于350,那么稱該客戶為“駕駛達(dá)人”.從A,B兩組客戶中,各隨機(jī)抽取1位,記“駕駛達(dá)人”的人數(shù)為
,求隨機(jī)變量
的分布列及其數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某旅游愛好者計(jì)劃從3個(gè)亞洲國(guó)家A1,A2,A3和3個(gè)歐洲國(guó)家B1,B2,B3中選擇2個(gè)國(guó)家去旅游.
(1)若從這6個(gè)國(guó)家中任選2個(gè),求這2個(gè)國(guó)家都是亞洲國(guó)家的概率;
(2)若從亞洲國(guó)家和歐洲國(guó)家中各選1個(gè),求這兩個(gè)國(guó)家包括A1,但不包括B1的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列
的首項(xiàng)為1,各項(xiàng)均為正數(shù),其前
項(xiàng)和為
,
,
.
(1)求
,
的值;
(2)求證:數(shù)列
為等差數(shù)列;
(3)設(shè)數(shù)列
滿足
,
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列
的前n項(xiàng)和
,
是等差數(shù)列,且
.
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)令
.求數(shù)列
的前n項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線
(
,
)的一條漸近線方程為
,點(diǎn)
在雙曲線上;拋物線
(
)的焦點(diǎn)F與雙曲線的右焦點(diǎn)重合.
(1)求雙曲線和拋物線的標(biāo)準(zhǔn)方程;
(2)過(guò)焦點(diǎn)F作一條直線l交拋物線于A,B兩點(diǎn),當(dāng)直線l的斜率為
時(shí),求線段
的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】受電視機(jī)在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)生產(chǎn)每臺(tái)電視機(jī)的利潤(rùn)與該電視機(jī)首次出現(xiàn)故障的時(shí)間有關(guān).某電視機(jī)制造廠生產(chǎn)甲、乙兩種型號(hào)電視機(jī),保修期均為2年,現(xiàn)從該廠已售出的兩種型號(hào)電視機(jī)中各隨機(jī)抽取50臺(tái),統(tǒng)計(jì)數(shù)據(jù)如下:
品牌 | 甲 | 乙 | |||
首次出現(xiàn)故障時(shí)間x(年) |
|
|
|
|
|
電視機(jī)數(shù)量(臺(tái)) | 3 | 5 | 42 | 8 | 42 |
每臺(tái)利潤(rùn)(千元) | 1 | 2 | 3 | 1.8 | 2.8 |
將頻率視為概率,解答下列問(wèn)題:
(1)從該廠生產(chǎn)的甲種型號(hào)電視機(jī)中隨機(jī)抽取一臺(tái),求首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;
(2)該廠預(yù)計(jì)今后這兩種型號(hào)電視機(jī)銷量相當(dāng),由于資金限制,只能生產(chǎn)其中一種型號(hào)電視機(jī),若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)該產(chǎn)生哪種型號(hào)電視機(jī)?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān),現(xiàn)收集了該種藥用昆蟲的6組觀測(cè)數(shù)據(jù)如下表:
溫度x/℃ | 21 | 23 | 24 | 27 | 29 | 32 |
產(chǎn)卵數(shù)y/個(gè) | 6 | 11 | 20 | 27 | 57 | 77 |
經(jīng)計(jì)算得:
,
,
線性回歸模型的殘差平方和
,
,
其中
分別為觀測(cè)數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),![]()
(1)若用線性回歸模型,求y關(guān)于x的回歸方程
(精確到0.1);
(2)若用非線性回歸模型求得y關(guān)于x的回歸方程為
,且相關(guān)指數(shù)
.
①試與1中的回歸模型相比,用
說(shuō)明哪種模型的擬合效果更好.
②用擬合效果好的模型預(yù)測(cè)溫度為35℃時(shí)該用哪種藥用昆蟲的產(chǎn)卵數(shù)(結(jié)果取整數(shù))
附:一組數(shù)據(jù)
其回歸直線
的斜率和截距的最小二乘估計(jì)為
,
;相關(guān)指數(shù)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】太極是中國(guó)古代的哲學(xué)術(shù)語(yǔ),意為派生萬(wàn)物的本源.太極圖是以黑白兩個(gè)魚形紋組成的圓形圖案,俗稱陰陽(yáng)魚.太極圖形象化地表達(dá)了陰陽(yáng)輪轉(zhuǎn),相反相成是萬(wàn)物生成變化根源的哲理.太極圖形展現(xiàn)了一種互相轉(zhuǎn)化,相對(duì)統(tǒng)一的形式美.按照太極圖的構(gòu)圖方法,在平面直角坐標(biāo)系中,圓
被
的圖象分割為兩個(gè)對(duì)稱的魚形圖案,圖中的兩個(gè)一黑一白的小圓通常稱為“魚眼”,已知小圓的半徑均為
,現(xiàn)在大圓內(nèi)隨機(jī)投放一點(diǎn),則此點(diǎn)投放到“魚眼”部分的概率為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com