△ABC中,a、b、c分別是∠A、∠B、∠C的對邊,下列條件
①b=26,c=15,C=23°; 、赼=84,b=56,c=74; ③A=34°,B=56°,c=68;、躠=15,b=10,A=60°
能唯一確定△ABC的有________(寫出所有正確答案的序號).
②③④
分析:①由正弦定理可得 0<sinB<1,且sinB>sinC,故滿足條件的B可能是銳角,三角形由2解.
②由于此三角形三邊為定值,故這樣的三角形只有一個.
③根據(jù)三角形的內(nèi)角和公式可得C=90°,由于此直角三角形的三內(nèi)角和斜邊是確定的,故只有唯一的一個.
④根據(jù)條件可得此三角形確定了三個內(nèi)角和其中的兩邊,故這樣的三角形只有一個.
解答:①當(dāng)b=26,c=15,C=23°時,由正弦定理可得 0<sinB<1,且sinB>sinC,故滿足條件的B可能是銳角,也可能是鈍角,故滿足①的三角形有兩個.
②當(dāng)a=84,b=56,c=74時,滿足任意兩邊之和大于第三邊,由于此三角形三邊為定值,故這樣的三角形只有一個.
③由A=34°,B=56°,c=68,可得C=90°,此直角三角形的三內(nèi)角和斜邊是確定的,故只有唯一的一個.
④當(dāng)a=15,b=10,A=60°時,利用正弦定理以及大邊對大角可得B是一個固定的銳角,故C就確定了,此三角形確定了
三個內(nèi)角和其中的兩邊,故這樣的三角形只有一個.
故答案為 ②③④.
點評:本題考查解三角形,確定三角形的解的個數(shù)的方法,熟練三角形的內(nèi)角和公式、正弦定理、大邊對大角,是解題的關(guān)鍵.