【題目】某地有兩個國家AAAA級景區(qū)—甲景區(qū)和乙景區(qū).相關部門統(tǒng)計了這兩個景區(qū)2019年1月至6月的客流量(單位:百人),得到如圖所示的莖葉圖.關于2019年1月至6月這兩個景區(qū)的客流量,下列結論正確的是( )
![]()
A.甲景區(qū)客流量的中位數(shù)為13000
B.乙景區(qū)客流量的中位數(shù)為13000
C.甲景區(qū)客流量的平均值比乙景區(qū)客流量的平均值小
D.甲景區(qū)客流量的極差比乙景區(qū)客流量的極差大
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐
中,底面
是邊長為2的菱形,
,
,平面
平面
,點
為棱
的中點.
![]()
(Ⅰ)在棱
上是否存在一點
,使得
平面
,并說明理由;
(Ⅱ)當二面角
的余弦值為
時,求直線
與平面
所成的角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將一顆均勻的骰子擲兩次,第一次得到的點數(shù)記為
,第一次得到的點數(shù)記為
,則方程組
有唯一解的概率是___________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的零點;
(2)設函數(shù)
的圖象與函數(shù)
的圖象交于
,
兩點,求證:
;
(3)若
,且不等式
對一切正實數(shù)x恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐
中,底面
是邊長為2的菱形,
,
,平面
平面
,點
為棱
的中點.
![]()
(Ⅰ)在棱
上是否存在一點
,使得
平面
,并說明理由;
(Ⅱ)當二面角
的余弦值為
時,求直線
與平面
所成的角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】基于移動網絡技術的共享單車被稱為“新四大發(fā)明”之一,短時間內就風靡全國,給人們帶來新的出行體驗,某共享單車運營公司的市場研究人員為了了解公司的經營狀況,對公司最近6個月的市場占有率
進行了統(tǒng)計,結果如下表:
月份 | 2018.11 | 2018.12 | 2019.01 | 2019.02 | 2019.03 | 2019.04 |
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
| 11 | 13 | 16 | 15 | 20 | 21 |
(1)請用相關系數(shù)說明能否用線性回歸模型擬合
與月份代碼
之間的關系.如果能,請計算出
關于
的線性回歸方程,如果不能,請說明理由;
(2)根據(jù)調研數(shù)據(jù),公司決定再采購一批單車擴大市場,從成本1000元/輛的
型車和800元/輛的
型車中選購一種,兩款單車使用壽命頻數(shù)如下表:
| 1年 | 2年 | 3年 | 4年 | 總計 |
| 10 | 30 | 40 | 20 | 100 |
| 15 | 40 | 35 | 10 | 100 |
經測算,平均每輛單車每年能為公司帶來500元的收入,不考慮除采購成本以外的其它成本,假設每輛單車的使用壽命都是整數(shù)年,用頻率估計每輛車使用壽命的概率,以平均每輛單車所產生的利潤的估計值為決策依據(jù),如果你是公司負責人,會選擇哪款車型?
參考數(shù)據(jù):
,
,
,
.
參考公式:相關系數(shù)
,
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正三棱柱ABCA1B1C1中,已知AB=1,AA1=2,E,F,G分別是棱AA1,AC和A1C1的中點,以
為正交基底,建立如圖所示的空間直角坐標系F-xyz.
![]()
(1)求異面直線AC與BE所成角的余弦值;
(2)求二面角F-BC1-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知
是定義在
上的偶函數(shù),當
時,
.
(1)用分段函數(shù)形式寫出
的解析式;
(2)寫出
的單調區(qū)間;
(3)求出函數(shù)的最值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com