【題目】已知f(x)是R上的奇函數(shù),當(dāng)x>0時(shí),解析式為f(x)=
.
(1)求f(x)在R上的解析式;
(2)用定義證明f(x)在(0,+∞)上為減函數(shù).
【答案】(1) f(x)=
(2)見(jiàn)解析
【解析】試題分析:(1)分別求出當(dāng)x<0和x=0時(shí)的解析式,寫成分段函數(shù)的形式;(2)設(shè)x1,x2∈(0,+∞),且x1<x2,通過(guò)作差證明f(x1)>f(x2)即可。
試題解析:(1)設(shè)x<0,則-x>0,
∴f(-x)=
.
又∵f(x)是R上的奇函數(shù),
∴f(-x)=-f(x)=
,
∴f(x)=
.
又∵奇函數(shù)在x=0時(shí)有意義,
∴f(0)=0,
∴函數(shù)的解析式為f(x)=![]()
(2)證明:設(shè)x1,x2∈(0,+∞),且x1<x2,
則f(x1)-f(x2)=
-
=
![]()
=
.
∵x1,x2∈(0,+∞),x1<x2,
∴x1+1>0,x2+1>0,x2-x1>0,
∴f(x1)-f(x2)>0,
∴f(x1)>f(x2),
∴函數(shù)f(x)在(0,+∞)上為減函數(shù).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系
中,已知圓
:
.
![]()
⑴若圓
的半徑為2,圓
與
軸相切且與圓
外切,求圓
的標(biāo)準(zhǔn)方程;
⑵若過(guò)原點(diǎn)
的直線
與圓
相交于
兩點(diǎn),且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐
的底面為等腰梯形,
, 垂足為
是四棱錐的高,
為
中點(diǎn),設(shè)![]()
(1)證明:
;
(2)若
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2x+a(ex﹣1+e﹣x+1)有唯一零點(diǎn),則a=( )
A.﹣ ![]()
B.![]()
C.![]()
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
是方程
的兩根,數(shù)列
是遞增的等差數(shù)列,數(shù)列
的前
項(xiàng)和為
,且
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)記
,求數(shù)列
的前
和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x﹣1﹣alnx.
(Ⅰ)若 f(x)≥0,求a的值;
(Ⅱ)設(shè)m為整數(shù),且對(duì)于任意正整數(shù)n,(1+
)(1+
)…(1+
)<m,求m的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lg(ax-bx),(a>1>b>0).
(1)求f(x)的定義域;
(2)若f(x)在(1,+∞)上遞增且恒取正值,求a,b滿足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)若
為奇函數(shù),求
的值;
(2)試判斷
在
內(nèi)的單調(diào)性,并用定義證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某旅游愛(ài)好者計(jì)劃從3個(gè)亞洲國(guó)家A1,A2,A3和3個(gè)歐洲國(guó)家B1,B2,B3中選擇2個(gè)國(guó)家去旅游.
(1)若從這6個(gè)國(guó)家中任選2個(gè),求這2個(gè)國(guó)家都是亞洲國(guó)家的概率;
(2)若從亞洲國(guó)家和歐洲國(guó)家中各選1個(gè),求這兩個(gè)國(guó)家包括A1,但不包括B1的概率.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com