已知梯形
中,
∥
,
,
,
、
分別是
、
上的點,
∥
,
,
是
的中點.沿
將梯形
翻折,使平面
⊥平面
(如圖).![]()
![]()
(I)當(dāng)
時,求證:
;
(II)若以
、
、
、
為頂點的三棱錐的體積記為
,求
的最大值;
(III)當(dāng)
取得最大值時,求二面角
的余弦值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
如圖,P-ABC是底面邊長為1的正三棱錐,D、E、F分別為棱長PA、PB、PC上的點, 截面DEF∥底面ABC, 且棱臺DEF-ABC與棱錐P-ABC的棱長和相等.(棱長和是指多面體中所有棱的長度之和)![]()
(1)求證:P-ABC為正四面體;
(2)棱PA上是否存在一點M,使得BM與面ABC所成的角為45°?若存在,求出點M的位置;若不存在,請說明理由。
(3)設(shè)棱臺DEF-ABC的體積為V=
, 是否存在體積為V且各棱長均相等的平行六面體,使得它與棱臺DEF-ABC有相同的棱長和,并且該平行六面體的一條側(cè)棱與底面兩條棱所成的角均為60°? 若存在,請具體構(gòu)造出這樣的一個平行六面體,并給出證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖,在平面四邊形
中,
是正三角形,
,
.
(Ⅰ)將四邊形
的面積
表示成關(guān)于
的函數(shù);
(Ⅱ)求
的最大值及此時
的值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題12分)如圖,在側(cè)棱錐垂直底面的四棱錐ABCD-A1B1C1D1中,AD∥BC,
AD⊥AB,AB=
。AD=2,BC=4,AA1=2,E是DD1的中點,F(xiàn)是平面B1C1E
與直線AA1的交點。
(1)證明:(i)EF∥A1D1;
(ii)BA1⊥平面B1C1EF;
(2)求BC1與平面B1C1EF所成的角的正弦值。![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題6分)已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個底邊長為8、高為4的等腰三角形,側(cè)視圖是一個底邊長為6、高為4的等腰三角形.
(1)求該幾何體的體積V;
(2)求該幾何體的側(cè)面積S。![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com