欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

13.已知函數(shù)f(x)=cos2x-sin2x,下列說法錯誤的是( 。
A.f(x)的最小正周期為πB.x=$\frac{π}{2}$是f(x)的一條對稱軸
C.f(x)在(-$\frac{π}{4}$,$\frac{π}{4}$)上單調(diào)遞增D.|f(x)|的值域是[0,1]

分析 由三角函數(shù)公式化簡可得f(x)=cos2x,由三角函數(shù)的性質(zhì)逐個選項驗證可得.

解答 解:∵f(x)=cos2x-sin2x=cos2x,
∴f(x)的最小正周期T=$\frac{2π}{2}$=π,選項A正確;
由2x=kπ可得x=$\frac{kπ}{2}$,k∈Z,
∴x=$\frac{π}{2}$是f(x)的一條對稱軸,選項B正確;
由2kπ+π≤2x≤2kπ+2π可得kπ+$\frac{π}{2}$≤x≤kπ+π,
∴函數(shù)的單調(diào)遞增區(qū)間為[kπ+$\frac{π}{2}$,kπ+π],k∈Z,C錯誤;
|f(x)|=|cos2x|,故值域為[0,1],D正確.
故選:C

點評 本題考查三角函數(shù)恒等變換,涉及三角函數(shù)的單調(diào)性和值域以及周期性,屬基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.已知命題p:若$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow$∥$\overrightarrow{c}$,則$\overrightarrow{a}$∥$\overrightarrow{c}$,命題q:?x∈(0,$\frac{π}{2}$),sinx<tanx,則下列命題中的真命題是(  )
A.p∧qB.p∨(¬q)C.(¬p)∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設m<0,點M(m,-2m)為角α的終邊上一點,則$\frac{1}{{2sinαcosα+{{cos}^2}α}}$的值為(  )
A.$-\frac{5}{3}$B.-2C.$\frac{2}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若z(1+i)=(1-i)2(i為虛數(shù)單位),則復數(shù)z在復平面內(nèi)對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若直線l被圓C:x2+y2=2所截的弦長不小于2,下列方程表示的曲線中與直線l一定有公共點的是( 。
A.y=x2B.(x-1)2+y2=1C.x2-y2=1D.$\frac{x^2}{2}+{y^2}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知等差數(shù)列{an}中,a3=-13,a5=-11,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)若bn=(-1)n$|\begin{array}{l}{{a}_{n}+1}\end{array}|$(n<16),求數(shù)列{bn+$\frac{1}{{a}_{n}}$}的最大值和最小值;
(3)若cn=an+16+$\frac{1}{{(a}_{n}+16)^2}$,記數(shù)列{cn}前n項和為Sn
求證:$\frac{n^2(n+1)+3n-1}{2n}$≤Sn≤$\frac{6n^3+9n^2+23n-2}{6(2n+1)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知b>a>0,則M=$\frac{{a}^{2}+2ab+^{2}}{ab-{a}^{2}}$的最小值是8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在棱長為2的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是A1B1、B1C1的中點.
(1)求三棱錐A1-AB1D1體積;
(2)求異面直線DB1與EF所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.計算:
(1)$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{4^{\frac{2}{3}}+2\root{3}{ab}+{a}^{\frac{2}{3}}}$÷(1-2$\root{3}{\frac{a}}$)×$\root{3}{a}$=a
(2)(0.0081)${\;}^{-\frac{1}{4}}$-[3×($\frac{7}{8}$)0]-1•[81-0.25+(3$\frac{3}{8}$)${\;}^{-\frac{1}{3}}$]${\;}^{-\frac{1}{2}}$-10×0.027${\;}^{\frac{1}{3}}$=0.

查看答案和解析>>

同步練習冊答案