如圖,在四棱錐
中,底面
為矩形,側(cè)棱
底面
,
,
,
,
為
的中點(diǎn).
![]()
(1)求直線
與
所成角的余弦值;
(2)在側(cè)面
內(nèi)找一點(diǎn)
,使
面
,并求出
點(diǎn)到直線
和
的距離.
點(diǎn)的坐標(biāo)為
,從而
點(diǎn)到
的距離分別為
.
【解析】
試題分析:解:(1)建立如圖所示的空間直角坐標(biāo)系,
![]()
則
的坐標(biāo)為
,
,
從而
.
設(shè)
與
的夾角為
,
則
,
與
所成角的余弦值為
;
(2)由于
點(diǎn)在側(cè)面
內(nèi),故可設(shè)
點(diǎn)坐標(biāo)為
,
則
,
由
面
,可得![]()
即![]()
化簡(jiǎn),得![]()
![]()
即
點(diǎn)的坐標(biāo)為
,從而
點(diǎn)到
的距離分別為
.
考點(diǎn):本題主要考查空間向量的應(yīng)用,向量的數(shù)量積,向量的坐標(biāo)運(yùn)算。
點(diǎn)評(píng):典型綜合題。通過建立空間直角坐標(biāo)系,將求異面直線的夾角余弦及距離計(jì)算問題,轉(zhuǎn)化成向量的坐標(biāo)運(yùn)算。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010-2011年廣西省桂林中學(xué)高二下學(xué)期期中考試數(shù)學(xué) 題型:解答題
((本小題滿分12分)
如圖,在四棱錐
中,底面
是矩形.已知
.![]()
(1)證明
平面
;
(2)求異面直線
與
所成的角的大;
(3)求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆福建省三明市高三第一學(xué)期測(cè)試?yán)砜茢?shù)學(xué)試卷 題型:解答題
如圖,在四棱錐
中,底面
是菱形,
,
,
,
平面
,
是
的中點(diǎn),
是
的中點(diǎn).
(Ⅰ) 求證:
∥平面
;
(Ⅱ)求證:平面
⊥平面
;
(Ⅲ)求平面
與平面
所成的銳二面角的大小.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆上海市高二年級(jí)期終考試數(shù)學(xué) 題型:解答題
(本題滿分16分)
如圖,在四棱錐
中,底面
是矩形.已知
.
(1)證明
平面
;
(2)求異面直線
與
所成的角的大;
(3)求二面角
的大。
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年江蘇省高二下學(xué)期期末考試附加卷數(shù)學(xué)卷 題型:解答題
如圖,在四棱錐
中,底面
是正方形,側(cè)棱
,
為
中點(diǎn),作
交
于![]()
![]()
(1)求PF:FB的值
(2)求平面
與平面
所成的銳二面角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆浙江省高三6月考前沖刺卷數(shù)學(xué)理 題型:解答題
(本小題滿分14分)
如圖,在四棱錐
中,底面
為平行四邊形,
平面
,![]()
![]()
在棱
上.
![]()
(Ⅰ)當(dāng)
時(shí),求證
平面![]()
(Ⅱ)當(dāng)二面角
的大小為
時(shí),求直線
與平面
所成角的正弦值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com