分析 (1)利用三角恒等變換化簡(jiǎn)函數(shù)的解析式,再利用正弦函數(shù)的周期性以及它的圖象的對(duì)稱性,求得f(x)的最小正周期及其圖象的對(duì)稱中心.
(2)利用正弦函數(shù)的單調(diào)性,求得函數(shù)f(x)的單調(diào)遞增區(qū)間.
解答 解:(1)$f(x)=\frac{1}{2}sin2x+\frac{{\sqrt{3}}}{2}cos2x-\sqrt{3}cos2x$=$\frac{1}{2}sin2x-\frac{{\sqrt{3}}}{2}cos2x$=$sin({2x-\frac{π}{3}})$,
所以f(x)的最小正周期為$T=\frac{2π}{2}=π$.
令$2x-\frac{π}{3}=kπ({k∈Z})$,求得x=$\frac{kπ}{2}$+$\frac{π}{6}$,可得函數(shù)的圖象對(duì)稱中心為$({\frac{kπ}{2}+\frac{π}{6},0})({k∈Z})$.
(2)令$2kπ-\frac{π}{2}≤2x-\frac{π}{3}≤2kπ+\frac{π}{2}({k∈Z})$,解得$kπ-\frac{π}{12}≤x≤kπ+\frac{5π}{12}({k∈Z})$,
所以f(x)的單調(diào)遞增區(qū)間為$[{kπ-\frac{π}{12},kπ+\frac{5π}{12}}]({k∈Z})$.
點(diǎn)評(píng) 本題主要考查三角恒等變換,正弦函數(shù)的周期性和單調(diào)性,以及它的圖象的對(duì)稱性,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $-\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com