【題目】已知點
是拋物線
的焦點,
是其準線
上任意一點,過點
作直線
,
與拋物線
相切,
,
為切點,
,
與
軸分別交于
,
兩點.
![]()
(1)求焦點
的坐標(biāo),并證明直線
過點
;
(2)求四邊形
面積的最小值.
【答案】(1)
,證明見解析;(2)3
【解析】
(1)由點斜式設(shè)出直線
的直線方程,再由
在
上,得出直線
的方程,從而證明直線
過點
;
(2)將直線
的方程與拋物線方程聯(lián)立,結(jié)合韋達定理,拋物線的性質(zhì),點到直線的距離公式得出
,
,再由四邊形
的面積
,結(jié)合導(dǎo)數(shù)得出四邊形
面積的最小值.
(1)由題意可知![]()
設(shè)
,則
即![]()
同理
.
又
在
上,則
,所以![]()
所以直線
過焦點F.
(2)由(1)知
,代入
得![]()
則![]()
則![]()
到AB的距離
,所以![]()
由(1)知
,則![]()
所以
,令![]()
則四邊形
的面積![]()
設(shè)
,![]()
當(dāng)
時,![]()
即函數(shù)
在
上是增函數(shù)
則四邊形
面積的最小值為3
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知橢圓
過點
,
,
是兩個焦點.以橢圓
的上頂點
為圓心作半徑為
的圓,
(1)求橢圓
的方程;
(2)存在過原點的直線
,與圓
分別交于
,
兩點,與橢圓
分別交于
,
兩點(點
在線段
上),使得
,求圓
半徑
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
(
)過點
,離心率為
.其左、右焦點分別為
,
,O為坐標(biāo)原點.直線l:
與以線段
為直徑的圓相切,且直線l與橢圓C交于不同的A,B兩點.
(1)求橢圓C的方程;
(2)若滿足
,求
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的多面體ABCDEF滿足:正方形ABCD與正三角形FBC所在的兩個平面互相垂直,FB∥AE且FB=2EA.
![]()
(1)證明:平面EFD⊥平面ABFE;
(2)求二面角E﹣FD﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國際上通常用年齡中位數(shù)指標(biāo)作為劃分國家或地區(qū)人口年齡構(gòu)成的標(biāo)準:年齡中位數(shù)在20歲以下為“年輕型”人口;年齡中位數(shù)在20~30歲為“成年型”人口;年齡中位數(shù)在30歲以上為“老齡型”人口.
![]()
如圖反映了我國全面放開二孩政策對我國人口年齡中位數(shù)的影響.據(jù)此,對我國人口年齡構(gòu)成的類型做出如下判斷:①建國以來直至2000年為“成年型”人口;②從2010年至2020年為“老齡型”人口;③放開二孩政策之后我國仍為“老齡型”人口.其中正確的是( )
A.②③B.①③C.②D.①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
是
上一點.
(1)求橢圓
的方程;
(2)設(shè)
是
分別關(guān)于兩坐標(biāo)軸及坐標(biāo)原點的對稱點,平行于
的直線
交
于異于
的兩點
.點
關(guān)于原點的對稱點為
.證明:直線
與
軸圍成的三角形是等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的右焦點為
,上頂點為
,直線
的斜率為
,且原點到直線
的距離為
.
(1)求橢圓
的標(biāo)準方程;
(2)若不經(jīng)過點
的直線
:
與橢圓
交于
兩點,且與圓
相切.試探究
的周長是否為定值,若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在全球抗擊新冠肺炎疫情期間,我國醫(yī)療物資生產(chǎn)企業(yè)加班加點生產(chǎn)口罩、防護服、消毒水等防疫物品,保障抗疫一線醫(yī)療物資供應(yīng),在國際社會上贏得一片贊譽.我國某口罩生產(chǎn)企業(yè)在加大生產(chǎn)的同時,狠抓質(zhì)量管理,不定時抽查口罩質(zhì)量,該企業(yè)質(zhì)檢人員從所生產(chǎn)的口罩中隨機抽取了100個,將其質(zhì)量指標(biāo)值分成以下六組:
,
,
,…,
,得到如下頻率分布直方圖.
![]()
(1)求出直方圖中
的值;
(2)利用樣本估計總體的思想,估計該企業(yè)所生產(chǎn)的口罩的質(zhì)量指標(biāo)值的平均數(shù)和中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間中點值作代表,中位數(shù)精確到0.01);
(3)現(xiàn)規(guī)定:質(zhì)量指標(biāo)值小于70的口罩為二等品,質(zhì)量指標(biāo)值不小于70的口罩為一等品.利用分層抽樣的方法從該企業(yè)所抽取的100個口罩中抽出5個口罩,并從中再隨機抽取2個作進一步的質(zhì)量分析,試求這2個口罩中恰好有1個口罩為一等品的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為實現(xiàn)有效利用扶貧資金,增加貧困村民的收入,扶貧工作組結(jié)合某貧困村水質(zhì)優(yōu)良的特點,決定利用扶貧資金從外地購買甲、乙、丙三種魚苗在魚塘中進行養(yǎng)殖試驗,試驗后選擇其中一種進行大面積養(yǎng)殖,已知魚苗甲的自然成活率為0.8.魚苗乙,丙的自然成活率均為0.9,且甲、乙、丙三種魚苗是否成活相互獨立.
(1)試驗時從甲、乙,丙三種魚苗中各取一尾,記自然成活的尾數(shù)為
,求
的分布列和數(shù)學(xué)期望;
(2)試驗后發(fā)現(xiàn)乙種魚苗較好,扶貧工作組決定購買
尾乙種魚苗進行大面積養(yǎng)殖,為提高魚苗的成活率,工作組采取增氧措施,該措施實施對能夠自然成活的魚苗不產(chǎn)生影響.使不能自然成活的魚苗的成活率提高了50%.若每尾乙種魚苗最終成活后可獲利10元,不成活則虧損2元,且扶貧工作組的扶貧目標(biāo)是獲利不低于37.6萬元,問需至少購買多少尾乙種魚苗?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com