分析 求出直線的直角坐標(biāo)方程,設(shè)所求的點為P(-1+cosθ,sinθ),則P到直線的距離d=$\frac{|-1+cosθ+sinθ-1|}{\sqrt{2}}$=|sin(θ+$\frac{π}{4}$)-$\sqrt{2}$|,即可得出結(jié)論.
解答 解:直線的極坐標(biāo)方程是ρcosθ+ρsinθ-1=0,直角坐標(biāo)方程是x+y-1=0.
設(shè)所求的點為P(-1+cosθ,sinθ),則P到直線的距離d=$\frac{|-1+cosθ+sinθ-1|}{\sqrt{2}}$=|sin(θ+$\frac{π}{4}$)-$\sqrt{2}$|,
θ+$\frac{π}{4}$=2kπ+$\frac{π}{2}$,即θ=2kπ+$\frac{π}{4}$,k∈Z時,d取得最小值$\sqrt{2}$-1,
此時P(-1+$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$).
點評 本題主要考查把極坐標(biāo)方程化為直角坐標(biāo)方程的方法,點到直線的距離公式的應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2 | B. | -2 | C. | $-\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $[1,4+2\sqrt{3}]$ | B. | $[4-2\sqrt{3},4+2\sqrt{3}]$ | C. | $[1,2+\sqrt{3}]$ | D. | $[2-\sqrt{3},2+\sqrt{3}]$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com