【題目】在正方體ABCD
A1B1C1D1中,E,F分別為棱AA1,CC1的中點,則在空間中與三條直線A1D1,EF,CD都相交的直線( )
A.不存在B.有且只有兩條C.有且只有三條D.有無數(shù)條
科目:高中數(shù)學 來源: 題型:
【題目】已知
分別為
的三內角A,B,C的對邊,其面積
,在等差數(shù)列
中,
,公差
.數(shù)列
的前n項和為
,且
.
(1)求數(shù)列
的通項公式;
(2)若
,求數(shù)列
的前n項和
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系
中,直線
的參數(shù)方程為
(
為參數(shù)),以原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
(Ⅰ)求曲線
的直角坐標方程,并指出其表示何種曲線;(Ⅱ)設直線
與曲線
交于
兩點,若點
的直角坐標為
,試求當
時,
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】哥德巴赫猜想是“每個大于2的偶數(shù)可以表示為兩個素數(shù)的和”,如
,在不超過13的素數(shù)中,隨機選取兩個不同的數(shù),其和為偶數(shù)的概率是________(用分數(shù)表示)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知矩形
,
,
,將
沿對角線
進行翻折,得到三棱錐
,則在翻折的過程中,有下列結論:
①三棱錐
的體積最大值為
;
②三棱錐
的外接球體積不變;
③三棱錐
的體積最大值時,二面角
的大小是
;
④異面直線
與
所成角的最大值為
.
其中正確的是( )
A.①②④B.②③C.②④D.③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某游戲廠商對新出品的一款游戲設定了“防沉迷系統(tǒng)”,規(guī)則如下:
①3小時以內(含3小時)為健康時間,玩家在這段時間內獲得的累積經(jīng)驗值
單位:
與游玩時間
小時)滿足關系式:
;
②3到5小時(含5小時)為疲勞時間,玩家在這段時間內獲得的經(jīng)驗值為
即累積經(jīng)驗值不變);
③超過5小時為不健康時間,累積經(jīng)驗值開始損失,損失的經(jīng)驗值與不健康時間成正比例關系,比例系數(shù)為50.
⑴當
時,寫出累積經(jīng)驗值E與游玩時間t的函數(shù)關系式
,并求出游玩6小時的累積經(jīng)驗值;
⑵該游戲廠商把累積經(jīng)驗值E與游玩時間t的比值稱為“玩家愉悅指數(shù)”,記作
;若
,且該游戲廠商希望在健康時間內,這款游戲的“玩家愉悅指數(shù)”不低于24,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線
,雙曲線
的左、右焦點分別為F1,F2,M是雙曲線C2的一條漸近線上的點,且OM⊥MF2,O為坐標原點,若
,且雙曲線C1,C2的離心率相同,則雙曲線C2的實軸長是 ( )
A. 32 B. 4 C. 8 D. 16
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)
對定義城內的每一個值
,在其定義域內都存在唯一的
,使得
成立,則稱該函數(shù)為“
函數(shù)”.
(1)判斷函數(shù)
是否為“
函數(shù)”,并說明理由;
(2)若函數(shù)
在定義域
上為“
函數(shù)”,求
的取值范圍;
(3)已知函數(shù)
在定義域
上為“
函數(shù)”.若存在實數(shù)
,使得對任意的
,不等式
都成立,求實數(shù)
的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com