【題目】科研人員在對(duì)人體脂肪含量和年齡之間關(guān)系的研究中,獲得了一些年齡和脂肪含量的簡(jiǎn)單隨機(jī)樣本數(shù)據(jù),如下表:
| 26 | 27 | 39 | 41 | 49 | 53 | 56 | 58 | 60 | 61 |
| 14.5 | 17.8 | 21.2 | 25.9 | 26.3 | 29.6 | 31.4 | 33.5 | 35.2 | 34.6 |
根據(jù)上表的數(shù)據(jù)得到如下的散點(diǎn)圖.
![]()
(1)根據(jù)上表中的樣本數(shù)據(jù)及其散點(diǎn)圖:
(i)求
;
(i)計(jì)算樣本相關(guān)系數(shù)(精確到0.01),并刻畫(huà)它們的相關(guān)程度.
(2)若
關(guān)于
的線性回歸方程為
,求
的值(精確到0.01),并根據(jù)回歸方程估計(jì)年齡為50歲時(shí)人體的脂肪含量.
附:參考數(shù)據(jù):
,
,
,
,
,
,
參考公式:相關(guān)系數(shù)
![]()
回歸方程
中斜率和截距的最小二乘估計(jì)公式分別為
,
.
【答案】(1) (ⅰ)47 (ⅱ)見(jiàn)解析;(2)
;
%.
【解析】
(1)(i)根據(jù)上表中的樣本數(shù)據(jù),利用平均數(shù)的公式求得結(jié)果;(ii)利用公式求得相關(guān)系數(shù)
的值,從而可以推斷人體脂肪含量和年齡的相關(guān)程度很強(qiáng).
(2)利用回歸直線過(guò)樣本中心點(diǎn),求得
,得到回歸直線的方程,再將
代入回歸直線方程求得結(jié)果.
(1)根據(jù)上表中的樣本數(shù)據(jù)及其散點(diǎn)圖:
(。
.
(ⅱ)
![]()
![]()
.
因?yàn)?/span>
,
,
所以
.
由樣本相關(guān)系數(shù)
,可以推斷人體脂肪含量和年齡的相關(guān)程度很強(qiáng).
(2)因?yàn)榛貧w方程為
,即
.
所以
.
【或利用
】
所以
關(guān)于
的線性回歸方程為
.
將
代入線性回歸方程得
.
所以根據(jù)回歸方程估計(jì)年齡為
歲時(shí)人體的脂肪含量為
%.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,a∈R.
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(Ⅱ)求f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
(α為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)M的極坐標(biāo)為
,直線l的極坐標(biāo)方程為
.
(1)求直線l的直角坐標(biāo)方程與曲線C的普通方程;
(2)若N是曲線C上的動(dòng)點(diǎn),P為線段MN的中點(diǎn),求點(diǎn)P到直線l的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,對(duì)于點(diǎn)
,定義變換
:將點(diǎn)
變換為點(diǎn)
,使得
其中
.這樣變換
就將坐標(biāo)系
內(nèi)的曲線變換為坐標(biāo)系
內(nèi)的曲線.則四個(gè)函數(shù)
,
,
,
在坐標(biāo)系
內(nèi)的圖象,變換為坐標(biāo)系
內(nèi)的四條曲線(如圖)依次是
![]()
A. ②,③,①,④B. ③,②,④,①C. ②,③,④,①D. ③,②,①,④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,
![]()
已知圓
和圓
.
(1)若直線
過(guò)點(diǎn)
,且被圓
截得的弦長(zhǎng)為
,
求直線
的方程;(2)設(shè)P為平面上的點(diǎn),滿足:
存在過(guò)點(diǎn)P的無(wú)窮多對(duì)互相垂直的直線
和
,
它們分別與圓
和圓
相交,且直線
被圓![]()
截得的弦長(zhǎng)與直線
被圓
截得的弦長(zhǎng)相等,試求所有滿足條件的點(diǎn)P的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:
的左右頂點(diǎn)分別為
,
,
為坐標(biāo)原點(diǎn),且
.
![]()
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)
為直線
在第一象限內(nèi)的一點(diǎn),連接
交橢圓于點(diǎn)
,連接
并延長(zhǎng)交橢圓于點(diǎn)
.若直線
的斜率為1,求
點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線
:
上的點(diǎn)到焦點(diǎn)的距離最小值為1.
![]()
(1)求
的值;
(2)若點(diǎn)
在曲線
:
上,且在曲線
上存在三點(diǎn)
,
,
,使得四邊形
為平行四邊形.求平行四邊形
的面積
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查生活規(guī)律與患胃病是否與有關(guān),某同學(xué)在當(dāng)?shù)仉S機(jī)調(diào)查了200名30歲以上的人,并根據(jù)調(diào)查結(jié)果制成了不完整的列聯(lián)表如下:
不患胃病 | 患胃病 | 總計(jì) | |
生活有規(guī)律 | 60 | 40 | |
生活無(wú)規(guī)律 | 60 | 100 | |
總計(jì) | 100 |
(1)補(bǔ)全列聯(lián)表中的數(shù)據(jù);
(2)用獨(dú)性檢驗(yàn)的基本原理,說(shuō)明生活無(wú)規(guī)律與患胃病有關(guān)時(shí),出錯(cuò)的概率不會(huì)超過(guò)多少?
參考公式和數(shù)表如下:
![]()
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著科技的發(fā)展,網(wǎng)購(gòu)已經(jīng)逐漸融入了人們的生活,在家里不用出門(mén)就可以買(mǎi)到自己想要的東西,在網(wǎng)上付款即可,兩三天就會(huì)送到自己的家門(mén)口,所以選擇網(wǎng)購(gòu)的人數(shù)在逐年增加.某網(wǎng)店統(tǒng)計(jì)了2014年一2018年五年來(lái)在該網(wǎng)店的購(gòu)買(mǎi)人數(shù)
(單位:人)各年份的數(shù)據(jù)如下表:
年份( | 1 | 2 | 3 | 4 | 5 |
| 24 | 27 | 41 | 64 | 79 |
(1)依據(jù)表中給出的數(shù)據(jù),是否可用線性回歸模型擬合
與時(shí)間
(單位:年)的關(guān)系,請(qǐng)通過(guò)計(jì)算相關(guān)系數(shù)
加以說(shuō)明,(若
,則該線性相關(guān)程度很高,可用線性回歸模型擬合)
附:相關(guān)系數(shù)公式![]()
參考數(shù)據(jù)
![]()
(2)該網(wǎng)店為了更好的設(shè)計(jì)2019年的“雙十一”網(wǎng)購(gòu)活動(dòng)安排,統(tǒng)計(jì)了2018年“雙十一”期間8個(gè)不同地區(qū)的網(wǎng)購(gòu)顧客用于網(wǎng)購(gòu)的時(shí)間x(單位:小時(shí))作為樣本,得到下表
地區(qū) |
|
|
|
|
|
|
|
|
時(shí)間 | 0.9 | 1.6 | 1.4 | 2.5 | 2.6 | 2.4 | 3.1 | 1.5 |
①求該樣本數(shù)據(jù)的平均數(shù)
;
②通過(guò)大量數(shù)據(jù)統(tǒng)計(jì)發(fā)現(xiàn),該活動(dòng)期間網(wǎng)購(gòu)時(shí)間
近似服從正態(tài)分布
,如果預(yù)計(jì)2019年“雙十一”期間的網(wǎng)購(gòu)人數(shù)大約為50000人,估計(jì)網(wǎng)購(gòu)時(shí)間
的人數(shù).
(附:若隨機(jī)變量
服從正態(tài)分布
則
,![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com