如圖,兩條相交線段
、
的四個(gè)端點(diǎn)都在橢圓
上,其中,直線
的方程為
,直線
的方程為
.![]()
(1)若
,
,求
的值;
(2)探究:是否存在常數(shù)
,當(dāng)
變化時(shí),恒有
?
(1)
(2) ![]()
解析試題分析:
(1)聯(lián)立直線
與橢圓方程可以求出
的坐標(biāo),設(shè)出A點(diǎn)的坐標(biāo),且滿足A點(diǎn)在橢圓上和
,即根據(jù)AB為角平分線且與x軸垂直可得AP與AQ所在直線的傾斜角互為補(bǔ)角(斜率互為相反數(shù)),故兩條件聯(lián)立即可求出m的值.
(2) 聯(lián)立直線
與橢圓方程得到關(guān)于
的坐標(biāo)的韋達(dá)定理,由(1)這種特殊情況可得滿足題意的只可能是
,故一一帶入驗(yàn)證是否能使得
即可.
試題解析:
(1)由
,
解得
,
. 2分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f4/8/1spa24.png" style="vertical-align:middle;" />,所以
.
設(shè)
,則
,
化簡(jiǎn)得
, 5分
又
,聯(lián)立方程組,解得
,或
.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/6f/4/1c6dt2.png" style="vertical-align:middle;" />平分
,所以
不合,故
. 7分
(2)設(shè)
,
,由
,得
.
,
,
. 9分
若存常數(shù)
,當(dāng)
變化時(shí),恒有
,則由(Ⅰ)知只可能
.
①當(dāng)
時(shí),取
,
等價(jià)于
,
即
,
即
,
即
,此式恒成立.
所以,存常數(shù)
,當(dāng)
變化時(shí),恒有
. 13分
②當(dāng)
時(shí),取
,由對(duì)稱性同理可知結(jié)論成立.
故,存常數(shù)
,當(dāng)
變化時(shí),恒有
. 15分
考點(diǎn):斜率 橢圓
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
拋物線頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過(guò)雙曲線
=1(a>0,b>0)的一個(gè)焦點(diǎn),并與雙曲線實(shí)軸垂直,已知拋物線與雙曲線的一個(gè)交點(diǎn)為
,求拋物線與雙曲線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,橢圓C:
=1(a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,動(dòng)點(diǎn)M為右準(zhǔn)線上一點(diǎn)(異于右準(zhǔn)線與x軸的交點(diǎn)),設(shè)線段FM交橢圓C于點(diǎn)P,已知橢圓C的離心率為
,點(diǎn)M的橫坐標(biāo)為
.![]()
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線PA的斜率為k1,直線MA的斜率為k2,求k1·k2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓
經(jīng)過(guò)點(diǎn)
,離心率
,直線
的方程為
.![]()
(1)求橢圓
的方程;
(2)
是經(jīng)過(guò)右焦點(diǎn)
的任一弦(不經(jīng)過(guò)點(diǎn)
),設(shè)直線
與直線
相交于點(diǎn)
,記
的斜率分別為
.問(wèn):是否存在常數(shù)
,使得
?若存在,求
的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,斜率為1的直線過(guò)拋物線y2=2px(p>0)的焦點(diǎn),與拋物線交于兩點(diǎn)A,B,M為拋物線弧AB上的動(dòng)點(diǎn).![]()
(1)若|AB|=8,求拋物線的方程;
(2)求
的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,動(dòng)點(diǎn)
到兩定點(diǎn)
、
構(gòu)成
,且
,設(shè)動(dòng)點(diǎn)
的軌跡為
。![]()
(1)求軌跡
的方程;
(2)設(shè)直線
與
軸交于點(diǎn)
,與軌跡
相交于點(diǎn)
,且
,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知?jiǎng)狱c(diǎn)M(x,y)到直線l:x=4的距離是它到點(diǎn)N(1,0)的距離的2倍.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)過(guò)點(diǎn)P(0,3)的直線m與軌跡C交于A,B兩點(diǎn),若A是PB的中點(diǎn),求直線m的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的對(duì)稱中心為原點(diǎn)O,焦點(diǎn)在x軸上,左右焦點(diǎn)分別為
和
,且|![]()
|=2,
點(diǎn)(1,
)在該橢圓上.
(1)求橢圓C的方程;
(2)過(guò)
的直線
與橢圓C相交于A,B兩點(diǎn),若
A
B的面積為
,求以
為圓心且與直線
相切圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知△OFQ的面積為S,且
·
=1.設(shè)|
|=c(c≥2),S=
c.若以O(shè)為中心,F(xiàn)為一個(gè)焦點(diǎn)的橢圓經(jīng)過(guò)點(diǎn)Q,當(dāng)|
|取最小值時(shí),求橢圓的方程.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com