欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情
數列{an}的前n項和為Sn,且Sn=2an-1,設bn=2(log2an+1),n∈N*
(1)求數列{an}的通項公式;
(2)求數列{bn•an}的前n項和Tn;
(3)證明:對于任意n∈N+,不等式
b1+1
b1
b2+1
b2
•…•
bn+1
bn
n+1
恒成立.
考點:數列的求和,數列遞推式
專題:等差數列與等比數列
分析:(1)由已知得S1=a1=2a1-1,當n≥2時,Sn=2an-1,Sn-1=2an-1-1,從而{an}是首項為1,公比為2的等比數列,由此能求出an=2n-1
(2)由bn=2(log2an+1)=2(log22n-1+1)=2n.得bn•an=2n•2n-1=n•2n,由此利用錯位相減法能求出Tn=(n-1)•2n+1+2.
(3)由
bn+1
bn
=
2n+1
2n
,利用用數學歸納法證明不等式
3
2
×
5
4
×…×
2n+1
2n
n+1
成立,即可證明對于任意n∈N+,不等式
b1+1
b1
b2+1
b2
•…•
bn+1
bn
n+1
恒成立.
解答: (1)解:∵數列{an}的前n項和為Sn,且Sn=2an-1,
∴S1=a1=2a1-1,
解得a1=1,
當n≥2時,Sn=2an-1,Sn-1=2an-1-1,
兩式相減,得an=2an-2an-1,∴an=2an-1
∴{an}是首項為1,公比為2的等比數列,
an=2n-1
(2)解:bn=2(log2an+1)=2(log22n-1+1)=2n.
∴bn•an=2n•2n-1=n•2n,
∴Tn=1•2+2•22+3•23+…+n•2n,①
2Tn=1•22+2•23+3•24+…+n•2n+1,②
①-②,得:-Tn=2+22+23+…+2n-n•2n+1
=
2(1-2n)
1-2
-n•2n+1
=(1-n)•2n+1-2.
∴Tn=(n-1)•2n+1+2.
(3)證明:∵bn=2n,∴
bn+1
bn
=
2n+1
2n
,
b1+1
b1
b2+1
b2
•…•
bn+1
bn

=
3
2
×
5
4
×…×
2n+1
2n

下面用數學歸納法證明不等式
3
2
×
5
4
×…×
2n+1
2n
n+1
成立.
①當n=1時,左邊=
3
2
,右邊=
2

3
2
2
,∴不等式成立.
②假設當n=k時不等式成立,即
3
2
×
5
4
×…×
2k+1
2k
k+1
成立.
則當n=k+1時,左邊=
3
2
×
5
4
×
…×
2k+1
2k
×
2k+3
2k+2
k+1
2k+3
2k+2

=
(2k+3)2
4(k+1)
=
(k+1)+1+
1
4(k+1)
k+2
,
∴當n=k+1時,不等式也成立.
由①、②可得不等式恒成立.
∴對于任意n∈N+,不等式
b1+1
b1
b2+1
b2
•…•
bn+1
bn
n+1
恒成立.
點評:本題主要考查數列的通項公式、前n項和公式的求法,考查不等式的證明,考查等差數列、等比數列等基礎知識,考查抽象概括能力,推理論證能力,運算求解能力,考查化歸與轉化思想、函數與方程思想,解題時要注意錯位相減法和數學歸納法的合理運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

下列式中正確的個數是( 。
(1)loga(b2-c2)=2logab-2loga
(2)(loga3)2=2loga3
(3)
lg15
lg3
=lg5       
(4)logax2=2loga|x|
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數學 來源: 題型:

如果一個數列{bn}的前項n和為Sn,并且對于任意的n∈N*都有Sn-2bn+3n=0
(1)設an=bn+3,求證:數列{an}是一個等比數列,并求出{bn}的通項公式.
(2)求數列{nbn}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

若直線l過點P(1,1)與雙曲線x2-
y2
4
=1只有一個公共點,則這樣的直線有( 。
A、4條B、3條C、2條D、1條

查看答案和解析>>

科目:高中數學 來源: 題型:

在區(qū)間[0,1]內任取兩個實數,則這兩個實數的和大于
1
3
的概率為( 。
A、
2
9
B、
7
9
C、
1
18
D、
17
18

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C:
x2
a2
+y2=1(a>1)的上頂點為A,右焦點為F2,直線AF2與圓M:(x-3)2+(y-1)2=3相切.
(1)求橢圓C的方程;
(2)過橢圓C的左焦點F1且斜率為1的直線l交橢圓C于P、Q兩點,求△PF2Q的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

(理科)各項均為正數的數列{an}中,a1=1,Sn是數列{an}的前n項和,對任意n∈N*,有2Sn=2pan2+pan-p(p∈R).
(1)求常數P的值;
(2)求數列{an}的通項公式;
(3)記bn=
4Sn
n+3
2n,求數列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=x-(x+1)ln(x+1)(x>-1)
(1)求f(x)的最大值;
(2)證明:當n>m>1時,(1+n)m<(1+m)n
(3)證明:當n>2014,且x1,x2,x3,…,xn∈R+,x1+x2+x3+…+xn=1時,(
x12
1+x1
+
x22
1+x2
+
x32
1+x3
+…+
xn2
1+xn
)
1
n
>(
1
2015
)
1
2014

查看答案和解析>>

科目:高中數學 來源: 題型:

根據如圖所示的程序,畫出其相應的程序框圖.

查看答案和解析>>

同步練習冊答案