| A. | $\sqrt{2}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | $\sqrt{5}$ | D. | $\frac{\sqrt{6}}{2}$ |
分析 由點到直線的距離公式可得|$\overrightarrow{M{F}_{2}}$|=b,則|$\overrightarrow{M{F}_{1}}$|=3b,cos∠F1OM=-$\frac{a}{c}$,由此利用余弦定理可得a,b的關系,進而得到a,c的關系,由離心率公式計算即可得到所求值.
解答
解:由F2(c,0)到漸近線y=$\frac{a}$x的距離為d=$\frac{bc}{\sqrt{{a}^{2}+^{2}}}$=b
即有|$\overrightarrow{M{F}_{2}}$|=b,
則|$\overrightarrow{M{F}_{1}}$|=3b,在△MF1O中,|$\overrightarrow{OM}$|=a,|$\overrightarrow{O{F}_{1}}$|=c,
cos∠F1OM=-cos∠F2OM=-$\frac{a}{c}$,
由余弦定理可知$\frac{{a}^{2}+{c}^{2}-9^{2}}{2ac}$=-$\frac{a}{c}$,
又c2=a2+b2,化簡可得a2=2b2,
即有c2=a2+b2=$\frac{3}{2}$a2,
即有e=$\frac{c}{a}$=$\frac{\sqrt{6}}{2}$.
故選:D.
點評 本題考查雙曲線的離心率的求法,解題時要認真審題,注意余弦定理的合理運用,考查運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\sqrt{2}$ | B. | 4 | C. | 2$\sqrt{2}$ | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 4 | B. | 6 | C. | 8 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com