(12分) 在直角坐標(biāo)系
中,點(diǎn)
到點(diǎn)
,
的距離之和是
,點(diǎn)
的軌跡是
,直線
與軌跡
交于不同的兩點(diǎn)
和
.⑴求軌跡
的方程;⑵是否存在常數(shù)
,
?若存在,求出
的值;若不存在,請說明理由.![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)在直角坐標(biāo)系
中橢圓
:![]()
的左、右焦點(diǎn)分別為
、
.其中
也是拋物線
:
的焦點(diǎn),點(diǎn)
為
與
在第一象限的交點(diǎn),且
.
(1)求
的方程;(6分)
(2)平面上的點(diǎn)
滿足
,直線
∥
,且與
交于
、
兩點(diǎn),若
,求直線
的方程. (8分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知在平面直角坐標(biāo)系中的一個橢圓,它的中心在原點(diǎn),左焦點(diǎn)為
,且過
,設(shè)點(diǎn)
.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若
是橢圓上的動點(diǎn),求線段
中點(diǎn)
的軌跡方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
,記點(diǎn)P的軌跡為E.
(1)求軌跡E的方程;
(2)設(shè)直線l過點(diǎn)F2且與軌跡E交于P、Q兩點(diǎn),若無論直線l繞點(diǎn)F2怎樣轉(zhuǎn)動,在x軸上總存在定點(diǎn)
,使
恒成立,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題11分)如圖1,拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)為(1,4),交x軸于A、B,交y軸于D,其中B點(diǎn)的坐標(biāo)為(3,0)
(1)求拋物線的解析式
(2)如圖
2,過點(diǎn)A的直線與拋物線交于點(diǎn)E,交y軸于點(diǎn)F,其中E點(diǎn)的橫坐標(biāo)為2,若直線PQ為拋物線的對稱軸,點(diǎn)G為PQ上一動點(diǎn),則
軸上是否存在一點(diǎn)H,使D、G、F、H四點(diǎn)圍成的四邊形周長最小.若存在,求出這個最小值及G、H的坐
標(biāo);若不存在,請說明理由.
(3)如圖3,拋物線上是否存在一點(diǎn)
,過點(diǎn)
作
軸的垂線,垂足為
,過點(diǎn)
作直線
,交線段
于點(diǎn)
,連接
,使
~
,若存在,求出點(diǎn)
的坐標(biāo);若不存在,說明理由.
圖1 圖2
圖3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知直線
相交于A、B兩點(diǎn)。
(1)若橢圓的離心率為
,焦距為2,求橢圓的標(biāo)準(zhǔn)方程;
(2)若
(其中O為坐標(biāo)原點(diǎn)),當(dāng)橢圓的離率
時,求橢圓的長軸長的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
、拋物線
的焦點(diǎn)均在
軸上,
的中心和
的頂點(diǎn)均為原點(diǎn)
,從每條曲線上取兩個點(diǎn),將其坐標(biāo)記錄于下表中:
| 3 | 4 | |||
| 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
極坐標(biāo)方程ρ=cosθ和參數(shù)方程
(t為參數(shù))所表示的圖形分別為( )
| A.圓、直線 | B.直線、圓 | C.圓、圓 | D.直線、直線 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com