【題目】某班主任對(duì)全班50名學(xué)生學(xué)習(xí)積極性和參加社團(tuán)活動(dòng)情況進(jìn)行調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如表所示
參加社團(tuán)活動(dòng) | 不參加社團(tuán)活動(dòng) | 合計(jì) | |
學(xué)習(xí)積極性高 | 17 | 8 | 25 |
學(xué)習(xí)積極性一般 | 5 | 20 | 25 |
合計(jì) | 22 | 28 | 50 |
(Ⅰ)如果隨機(jī)從該班抽查一名學(xué)生,抽到參加社團(tuán)活動(dòng)的學(xué)生的概率是多少?抽到不參加社團(tuán)活動(dòng)且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(Ⅱ)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法分析:學(xué)生的學(xué)習(xí)積極性與參加社團(tuán)活動(dòng)情況是否有關(guān)系?并說(shuō)明理由.
x2=
.
P(x2≥k) | 0.05 | 0.01 | 0.001 |
K | 3.841 | 6.635 | 10.828 |
【答案】解:(Ⅰ)積極參加社團(tuán)活動(dòng)的學(xué)生有22人,總?cè)藬?shù)為50人,
所以隨機(jī)從該班抽查一名學(xué)生,抽到參加社團(tuán)活動(dòng)的學(xué)生的概率是
=
;
抽到不參加社團(tuán)活動(dòng)且學(xué)習(xí)積極性一般的學(xué)生為20人,
所以其概率為
=
;
(Ⅱ)x2=
≈11.7
∵x2>10.828,
∴有99.9%的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與參加社團(tuán)活動(dòng)情況有關(guān)系.
【解析】(Ⅰ)求出積極參加社團(tuán)活動(dòng)的學(xué)生有22人,總?cè)藬?shù)為50人,得到概率,不參加社團(tuán)活動(dòng)且學(xué)習(xí)積極性一般的學(xué)生為20人,得到概率.
(Ⅱ)根據(jù)條件中所給的數(shù)據(jù),代入求這組數(shù)據(jù)的觀測(cè)值的公式,求出觀測(cè)值,把觀測(cè)值同臨界值進(jìn)行比較,得到有99.9%的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與參加社團(tuán)活動(dòng)情況有關(guān)系。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)镽的偶函數(shù)f(x)滿(mǎn)足對(duì)任意的x∈R,有f(x+2)=f(x)﹣f(1),且當(dāng)x∈[2,3]時(shí),f(x)=﹣(x﹣2)2+1.若函數(shù)y=f(x)﹣a(x﹣
)在(0,+∞)上恰有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.(
, 3)
B.(
,
)
C.(3,12)
D.(
, 12)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于任意實(shí)數(shù)a,b,定義max{a,b}=
, 已知在[﹣2,2]上的偶函數(shù)f(x)滿(mǎn)足當(dāng)0≤x≤2時(shí),f(x)=max{2x﹣1,2﹣x}若方程f(x)﹣mx+1=0恰有兩個(gè)根,則m的取值范圍是( 。
A.[﹣2,﹣eln2)∪(eln2,2]
B.[﹣eln2,0)∪(0,eln2]
C.[﹣2,0)∪(0,2]
D.[﹣e,﹣2)∪(2,e]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分14分)已知過(guò)原點(diǎn)的動(dòng)直線(xiàn)
與圓
相交于不同的兩點(diǎn)
,
.
(1)求圓
的圓心坐標(biāo);
(2)求線(xiàn)段
的中點(diǎn)
的軌跡
的方程;
(3)是否存在實(shí)數(shù)
,使得直線(xiàn)
與曲線(xiàn)
只有一個(gè)交點(diǎn)?若存在,求出
的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=alnx(a>0),e為自然對(duì)數(shù)的底數(shù).
(Ⅰ)若過(guò)點(diǎn)A(2,f(2))的切線(xiàn)斜率為2,求實(shí)數(shù)a的值;
(Ⅱ)當(dāng)x>0時(shí),求證:f(x)≥a(1﹣
);
(Ⅲ)在區(qū)間(1,e)上
>1恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:
的離心率為
,以
的四個(gè)頂點(diǎn)為頂點(diǎn)的四邊形的面積為
.
(1)求橢圓
的方程;
(2)設(shè)
,
分別為橢圓
的左、右頂點(diǎn),
是直線(xiàn)
上不同于點(diǎn)
的任意一點(diǎn),若直線(xiàn)
,
分別與橢圓相交于異于
,
的點(diǎn)
、
,試探究,點(diǎn)
是否在以
為直徑的圓內(nèi)?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系
中,點(diǎn)
,直線(xiàn)
,設(shè)圓
的半徑為1, 圓心在
上.
![]()
(1)若圓心
也在直線(xiàn)
上,過(guò)點(diǎn)
作圓
的切線(xiàn),求切線(xiàn)方程;
(2)若圓
上存在點(diǎn)
,使
,求圓心
的橫坐標(biāo)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,且滿(mǎn)足cos2A﹣cos2B=2cos(
﹣A)cos(
+A).
(1)求角B的值;
(2)若b=
且b≤a,求2a﹣c的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com