【題目】如圖,圓O是△ABC的外接圓,∠BAC的平分線交BC于點(diǎn)F,D是AF的延長線與⊙O的交點(diǎn),AC的延線與⊙O的切線DE交于點(diǎn)E. ![]()
(1)求證:
= ![]()
(2)若BD=3
,EC=2,CA=6,求BF的值.
【答案】
(1)證明:連接CD,則
∵AD平分∠BAC,
∴∠BAD=∠EAD,
=
,
∵DE是圓O的切線,
∴∠CDE=∠EAD=∠BAD.
∵∠DCE是四邊形ABCD的外角,
∴∠DCE=∠ABD,
∴△ABD∽△DCE,
∴
=
.
![]()
(2)解:∵
=
,BD=3
,
∴BD=CD=3
,∠CBD=∠BCD,
∵DE是圓O的切線,EC=2,CA=6,
∴∠CDE=∠CBD,DE2=ECEA=16,
∴DE=4,
∴∠CDE=∠BCD,
∴DE∥BC,
∴∠E=∠ACB=∠ADB,
∴△DCE∽△BFD,
∴
,
∴BF=
= ![]()
【解析】(1)連接CD,證明△ABD∽△DCE,即可證明:
=
(2)若BD=3
,EC=2,CA=6,求出DE,證明△DCE∽△BFD,即可求BF的值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
且
).
(1)當(dāng)
時,函數(shù)
恒有意義,求實(shí)數(shù)
的取值范圍;
(2)是否存在這樣的實(shí)數(shù)
,使得函數(shù)
在區(qū)間
上為減函數(shù),并且最大值為1?如果存在,試求出
的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,已知橢圓
:
的離心率
,且橢圓
上一點(diǎn)
到點(diǎn)
的距離的最大值為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)
,
為拋物線
:
上一動點(diǎn),過點(diǎn)
作拋物線
的切線交橢圓
于
兩點(diǎn),求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從一堆產(chǎn)品
正品與次品都多于2件
中任取2件,觀察正品件數(shù)和次品件數(shù),則下列說法:
“恰好有1件次品”和“恰好2件都是次品”是互斥事件
“至少有1件正品”和“全是次品”是對立事件
“至少有1件正品”和“至少有1件次品”是互斥事件但不是對立事件
“至少有1件次品”和“全是正品”是互斥事件也是對立事件
其中正確的有______
填序號
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】遂寧市觀音湖港口船舶?康姆桨甘窍鹊较韧#
(1)若甲乙兩艘船同時到達(dá)港口,雙方約定各派一名代表從1,2,3,4,5中各隨機(jī)選一個數(shù)(甲、乙選取的數(shù)互不影響),若兩數(shù)之和為偶數(shù),則甲先?;若兩數(shù)之和為奇數(shù),則乙先停靠,這種規(guī)則是否公平?請說明理由.
(2)根據(jù)以往經(jīng)驗(yàn),甲船將于早上7:00~8:00到達(dá),乙船將于早上7:30~8:30到達(dá),請求出甲船先?康母怕
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=|x+1|﹣|2﹣x|.
(1)解不等式f(x)<0;
(2)若m,n∈R+ ,
,求證:n+2m﹣f(x)>0恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的部分圖象如圖所示. ![]()
(1)求f(x)的解析式,并求函數(shù)f(x)在[﹣
,
]上的值域;
(2)在△ABC中,AB=3,AC=2,f(A)=1,求sin2B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知
所在的平面,
是
的直徑,
是
上一點(diǎn),且
是
中點(diǎn),
為
中點(diǎn).
![]()
(1)求證:
面
;
(2)求證:
面
;
(3)求三棱錐
的體積.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com