【題目】已知函數(shù)
.
(1)討論函數(shù)
在定義域上的單調(diào)性;
(2)令函數(shù)
,是自然對(duì)數(shù)的底數(shù),若函數(shù)
有且只有一個(gè)零點(diǎn)
,判斷
與
的大小,并說明理由.
【答案】(1)當(dāng)
時(shí),
在
上單調(diào)遞增;當(dāng)
或
時(shí),
在
上單調(diào)遞增, 當(dāng)
時(shí),
在
上單調(diào)遞減,在
上單調(diào)遞增;當(dāng)
時(shí),
在
上單調(diào)遞減;(2)
.
【解析】
(1)求出
,分四種情況討論
的范圍,在定義域內(nèi),分別令
求得
的范圍,可得函數(shù)
增區(qū)間,
求得
的范圍,可得函數(shù)
的減區(qū)間;(2)根據(jù)函數(shù)的單調(diào)性求出
在
上有唯一零點(diǎn)
,由已知函數(shù)
有且僅有一個(gè)零點(diǎn)
,則
,得
,令
,故
,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出零點(diǎn)的分布情況,從而可求出
的取值范圍即可.
(1)由已知
,且
,
①當(dāng)
時(shí),即當(dāng)
時(shí),
,
則函數(shù)
在
上單調(diào)遞增.
②當(dāng)
時(shí),即
或
時(shí),
有兩個(gè)根,
,因?yàn)?/span>
,所以
,
1°當(dāng)
時(shí),令
,解得
,
當(dāng)
或
時(shí),函數(shù)
在
上單調(diào)遞增,
2°當(dāng)
時(shí),令
,
,
解得
,
當(dāng)
時(shí),函數(shù)
在
上單調(diào)遞減,
在
上單調(diào)遞增;
3°當(dāng)
時(shí),令
,解得
,
當(dāng)
時(shí),函數(shù)
在
上單調(diào)遞減.
(2)函數(shù)
,
則
,
則
,所以
在
上單調(diào)增,
當(dāng)
,所以![]()
所以
在
上有唯一零點(diǎn)
,
當(dāng)
,所以
為
的最小值
由已知函數(shù)
有且只有一個(gè)零點(diǎn)
,則![]()
所以
則![]()
則
,得
,
令
,所以![]()
則
,所以
,
所以
在
單調(diào)遞減,
因?yàn)?/span>
,
所以
在
上有一個(gè)零點(diǎn),在
無零點(diǎn),
所以
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某制造商3月生產(chǎn)了一批乒乓球,從中隨機(jī)抽樣100個(gè)進(jìn)行檢查,測(cè)得每個(gè)球的直徑(單位:mm),將數(shù)據(jù)分組如下:
分組 | 頻數(shù) | 頻率 |
[39.95,39.97) | 10 | |
[39. 97,39.99) | 20 | |
[39.99,40.01) | 50 | |
[40.01,40.03] | 20 | |
合計(jì) | 100 |
![]()
(Ⅰ)請(qǐng)?jiān)谏媳碇醒a(bǔ)充完成頻率分布表(結(jié)果保留兩位小數(shù)),并在圖中畫出頻率分布直方圖;
(Ⅱ)若以上述頻率作為概率,已知標(biāo)準(zhǔn)乒乓球的直徑為40.00 mm,試求這批球的直徑誤差不超過0.03 mm的概率;
(Ⅲ)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)經(jīng)常用該組區(qū)間的中點(diǎn)值(例如區(qū)間[39.99,40.01)的中點(diǎn)值是40.00作為代表.據(jù)此估計(jì)這批乒乓球直徑的平均值(結(jié)果保留兩位小數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log4(ax2+2x+3).
(1)若f(x)定義域?yàn)镽,求a的取值范圍;
(2)若f(1)=1,求f(x)的單調(diào)區(qū)間;
(3)是否存在實(shí)數(shù)a,使f(x)的最小值為0?若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓
的離心率
,拋物線
的焦點(diǎn)恰好是橢圓
的右焦點(diǎn)
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)
作兩條斜率都存在的直線
,設(shè)
與橢圓
交于
兩點(diǎn),
與橢圓
交于
兩點(diǎn),若
是
與
的等比中項(xiàng),求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016·雅安高一檢測(cè))已知函數(shù)f(x)=2x的定義域是[0,3],設(shè)g(x)=f(2x)-f(x+2),
(1)求g(x)的解析式及定義域;
(2)求函數(shù)g(x)的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】α,β是兩個(gè)不重合的平面,在下列條件中,可判斷平面α,β平行的是( 。
A. m,n是平面
內(nèi)兩條直線,且
,![]()
B.
內(nèi)不共線的三點(diǎn)到
的距離相等
C.
,
都垂直于平面![]()
D. m,n是兩條異面直線,
,
,且
,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)是定義在(0,+∞)上的單調(diào)增函數(shù),滿足f(xy)=f(x)+f(y),f(3)=1,當(dāng)f(x)+f(x-8)≤2時(shí),x的取值范圍是( )
A.(8,+∞)B.(8,9]C.[8,9]D.(0,8)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠擬生產(chǎn)甲、乙兩種適銷產(chǎn)品,每件銷售收入分別為3000元,2000元.甲、乙產(chǎn)品都需要在A、B兩種設(shè)備上加工,在每臺(tái)A、B設(shè)備上加工一件甲所需工時(shí)分別為1
,2
,加工一件乙設(shè)備所需工時(shí)分別為2
,1
.A、B兩種設(shè)備每月有效使用臺(tái)時(shí)數(shù)分別為400
和500
,分別用
表示計(jì)劃每月生產(chǎn)甲,乙產(chǎn)品的件數(shù).
(Ⅰ)用
列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)問分別生產(chǎn)甲、乙兩種產(chǎn)品各多少件,可使收入最大?并求出最大收入.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com