(本小題滿分16分)已知圓
:
交
軸于
兩點(diǎn),曲線
是以
為長(zhǎng)軸,直線:
為準(zhǔn)線的橢圓.(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若
是直線上的任意一點(diǎn),以
為直徑的圓
與圓
相交于
兩點(diǎn),求證:直線
必過(guò)定點(diǎn)
,并求出點(diǎn)
的坐標(biāo);
(3)如圖所示,若直線
與橢圓
交于
兩點(diǎn),且
,試求此時(shí)弦
的長(zhǎng).
解:(Ⅰ)設(shè)橢圓的標(biāo)準(zhǔn)方程為
,則:
,從而:
,故
,所以橢圓的標(biāo)準(zhǔn)方程為
!4分
(Ⅱ)設(shè)
,則圓
方程為
與圓
聯(lián)立消去
得
的方程為
,
過(guò)定點(diǎn)
。 …………………8分
(Ⅲ)解法一:設(shè)
,則
,………①
,
,即:
代入①解得:
(舍去正值),
,所以
,
從而圓心
到直線
的距離
,
從而
。 …………………16分
解法二:過(guò)點(diǎn)
分別作直線
的垂線,垂足分別為
,設(shè)
的傾斜角為
,則:
,從而
,
由
得:
,
,故
,
由此直線
的方程為
,以下同解法一。
解法三:將![]()
與橢圓方程
聯(lián)立成方程組消去
得:
,設(shè)
,則
。
,
,所以
代入韋達(dá)定理得:
,
消去
得:
,
,由圖得:
,
所以
,以下同解法一。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(2010江蘇卷)18、(本小題滿分16分)
在平面直角坐標(biāo)系
中,如圖,已知橢圓
的左、右頂點(diǎn)為A、B,右焦點(diǎn)為F。設(shè)過(guò)點(diǎn)T(
)的直線TA、TB與橢圓分別交于點(diǎn)M
、
,其中m>0,
。
(1)設(shè)動(dòng)點(diǎn)P滿足
,求點(diǎn)P的軌跡;
(2)設(shè)
,求點(diǎn)T的坐標(biāo);
(3)設(shè)
,求證:直線MN必過(guò)x軸上的一定點(diǎn)(其坐標(biāo)與m無(wú)關(guān))。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年泰州中學(xué)高一下學(xué)期期末測(cè)試數(shù)學(xué) 題型:解答題
(本小題滿分16分)
函數(shù)
,
(
),
A=![]()
(Ⅰ)求集合A;
(Ⅱ)如果
,對(duì)任意
時(shí),
恒成立,求實(shí)數(shù)
的范圍;
(Ⅲ)如果
,當(dāng)“
對(duì)任意
恒成立”與“
在
內(nèi)必有解”同時(shí)成立時(shí),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆江蘇大豐新豐中學(xué)高二上期中考試文數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分16分) 本題請(qǐng)注意換算單位
某開(kāi)發(fā)商用9000萬(wàn)元在市區(qū)購(gòu)買一塊土地建一幢寫(xiě)字樓,規(guī)劃要求寫(xiě)字樓每層建筑面積為2000平方米。已知該寫(xiě)字樓第一層的建筑費(fèi)用為每平方米4000元,從第二層開(kāi)始,每一層的建筑費(fèi)用比其下面一層每平方米增加100元。
(1)若該寫(xiě)字樓共x層,總開(kāi)發(fā)費(fèi)用為y萬(wàn)元,求函數(shù)y=f(x)的表達(dá)式;
(總開(kāi)發(fā)費(fèi)用=總建筑費(fèi)用+購(gòu)地費(fèi)用)
(2)要使整幢寫(xiě)字樓每平方米開(kāi)發(fā)費(fèi)用最低,該寫(xiě)字樓應(yīng)建為多少層?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆安徽省蚌埠市高二下學(xué)期期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分16分)設(shè)命題
:方程
無(wú)實(shí)數(shù)根;
命題
:函數(shù)
的值域是
.如果命題
為真命題,
為假命題,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省高一第三階段檢測(cè)數(shù)學(xué)卷 題型:解答題
(本小題滿分16分)
已知函數(shù)f(x)=
為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對(duì)稱軸間的距離為![]()
(Ⅰ)求f(
)的值;
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移
個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)延長(zhǎng)到原來(lái)的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com