【題目】已知拋物線
的焦點(diǎn)曲線
的一個(gè)焦點(diǎn),
為坐標(biāo)原點(diǎn),點(diǎn)
為拋物線
上任意一點(diǎn),過點(diǎn)
作
軸的平行線交拋物線的準(zhǔn)線于
,直線
交拋物線于點(diǎn)
.
(Ⅰ)求拋物線
的方程;
(Ⅱ)求證:直線
過定點(diǎn)
,并求出此定點(diǎn)的坐標(biāo).
【答案】(I)
;(II)證明見解析.
【解析】試題分析:(Ⅰ)將曲線
化為標(biāo)準(zhǔn)方程,可求得
的焦點(diǎn)坐標(biāo)分別為
,可得
,所以
,即拋物線的方程為
;(Ⅱ)結(jié)合(Ⅰ),可設(shè)
,得
,從而直線
的方程為
,聯(lián)立直線與拋物線方程得
,解得
,直線
的方程為
,整理得
的方程為
,此時(shí)直線恒過定點(diǎn)
.
試題解析:(Ⅰ)由曲線
,化為標(biāo)準(zhǔn)方程可得
, 所以曲線
是焦點(diǎn)在
軸上的雙曲線,其中
,故
,
的焦點(diǎn)坐標(biāo)分別為
,因?yàn)閽佄锞的焦點(diǎn)坐標(biāo)為
,由題意知
,所以
,即拋物線的方程為
.
(Ⅱ)由(Ⅰ)知拋物線
的準(zhǔn)線方程為
,設(shè)
,顯然
.故
,從而直線
的方程為
,聯(lián)立直線與拋物線方程得
,解得![]()
①當(dāng)
,即
時(shí),直線
的方程為
,
②當(dāng)
,即
時(shí),直線
的方程為
,整理得
的方程為
,此時(shí)直線恒過定點(diǎn)
,
也在直線
的方程為
上,故直線
的方程恒過定點(diǎn)
.
【題型】解答題
【結(jié)束】
21
【題目】已知函數(shù)
, ![]()
(Ⅰ)當(dāng)
時(shí),求函數(shù)
的單調(diào)遞減區(qū)間;
(Ⅱ)若
時(shí),關(guān)于
的不等式
恒成立,求實(shí)數(shù)
的取值范圍;
(Ⅲ)若數(shù)列
滿足
,
,記
的前
項(xiàng)和為
,求證:
.
【答案】(I)
;(II)
;(III)證明見解析.
【解析】試題分析:(Ⅰ)求出
,在定義域內(nèi),分別令
求得
的范圍,可得函數(shù)
增區(qū)間,
求得
的范圍,可得函數(shù)
的減區(qū)間;(Ⅱ)當(dāng)
時(shí),因?yàn)?/span>
,所以
顯然不成立,先證明因此
時(shí),
在
上恒成立,再證明當(dāng)
時(shí)不滿足題意,從而可得結(jié)果;(III)先求出等差數(shù)列的前
項(xiàng)和為
,結(jié)合(II)可得
,各式相加即可得結(jié)論.
試題解析:(Ⅰ)由
,得
.所以![]()
令
,解得
或
(舍去),所以函數(shù)
的單調(diào)遞減區(qū)間為
.
(Ⅱ)由
得, ![]()
當(dāng)
時(shí),因?yàn)?/span>
,所以
顯然不成立,因此
.
令
,則
,令
,得
.
當(dāng)
時(shí),
,
,∴
,所以
,即有
.
因此
時(shí),
在
上恒成立.
②當(dāng)
時(shí),
,
在
上為減函數(shù),在
上為增函數(shù),
∴
,不滿足題意.
綜上,不等式
在
上恒成立時(shí),實(shí)數(shù)
的取值范圍是
.
(III)證明:由
知數(shù)列
是
的等差數(shù)列,所以![]()
所以![]()
由(Ⅱ)得,
在
上恒成立.
所以
. 將以上各式左右兩邊分別相加,得
.因?yàn)?/span>![]()
所以![]()
所以
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們稱一個(gè)非負(fù)整數(shù)集合
(非空)為好集合,若對任意
,或者
,或者
.以下記
為
的元素個(gè)數(shù).
(Ⅰ)給出所有的元素均小于
的好集合;(給出結(jié)論即可)
(Ⅱ)求出所有滿足
的好集合;(同時(shí)說明理由)
(Ⅲ)若好集合
滿足
,求證:
中存在元素
,使得
中所有元素均為
的整數(shù)倍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)
與常數(shù)
,若
恒成立,則稱
為函數(shù)
的一個(gè)“
數(shù)對”;設(shè)函數(shù)
的定義域?yàn)?/span>
,且
.
(Ⅰ)若
是
的一個(gè)“
數(shù)對”,且
,求常數(shù)
的值;
(Ⅱ)若
是
的一個(gè)“
數(shù)對”,求
;
(Ⅲ)若
是
的一個(gè)“
數(shù)對”,且當(dāng)
,
,求
的值及
在區(qū)間
上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若長方體
的底面是邊長為2的正方形,高為4,
是
的中點(diǎn),則( )
![]()
A.
B.平面
平面![]()
C.三棱錐
的體積為
D.三棱錐
的外接球的表面積為![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
(其中
,
,
)的圖象與
軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為
,且圖象上一個(gè)最高點(diǎn)為
.
(1)求
的解析式;
(2)先把函數(shù)
的圖象向左平移
個(gè)單位長度,然后再把所得圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)
的圖象,試寫出函數(shù)
的解析式.
(3)在(2)的條件下,若存在
,使得不等式
成立,求實(shí)數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
.
(I)求
的單調(diào)區(qū)間;
(II)當(dāng)0<a<2時(shí),求函數(shù)
在區(qū)間
上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知
是半圓
的直徑,
,
是將半圓圓周四等分的三個(gè)分點(diǎn).
![]()
(1)從
這5個(gè)點(diǎn)中任取3個(gè)點(diǎn),求這3個(gè)點(diǎn)組成直角三角形的概率;
(2)在半圓內(nèi)任取一點(diǎn)
,求
的面積大于
的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.各級(jí)政府相繼啟動(dòng)重大突發(fā)公共衛(wèi)生事件一級(jí)響應(yīng),全國齊心抗擊疫情,基本上控制住了疫情.下圖為
月
日至
月
日我國新型冠狀病毒肺炎全國總新增確診人數(shù)和新增境外輸入確診人數(shù)趨勢圖(數(shù)據(jù)來源:國家衛(wèi)健委官網(wǎng)),則下列表述中錯(cuò)誤的是( )
![]()
A.3月上旬全國總新增確診人數(shù)呈波動(dòng)下降趨勢.
B.3月中下旬全國總新增確診人數(shù)開始反彈的主要原因是境外輸入病例的增加.
C.全國總新增確診人數(shù)隨著境外輸入確診人數(shù)變化而變化.
D.4月中下旬國內(nèi)新增確診人數(shù)呈越來越少的趨勢.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com