.(本小題滿(mǎn)分16分)
已知橢圓![]()
上的一動(dòng)點(diǎn)
到右焦點(diǎn)的最短距離為
,且右焦點(diǎn)到右準(zhǔn)線(xiàn)的距離等于短半軸的長(zhǎng).(1)求橢圓
的方程;
(2)設(shè)
,
是橢圓
上關(guān)于
軸對(duì)稱(chēng)的任意兩個(gè)不同的點(diǎn),連結(jié)
交橢圓
于另一點(diǎn)
,證明直線(xiàn)
與
軸相交于定點(diǎn)
;
(3)在(2)的條件下,過(guò)點(diǎn)
的直線(xiàn)與橢圓
交于
兩點(diǎn),求
的取值
范圍.
解:(1)由題意知
,
解得
,
故橢圓
的方程為
.
…………………………4分
(2)由題意知直線(xiàn)
的斜率存在,設(shè)直線(xiàn)
的方程為
.
由
得
. ①
設(shè)點(diǎn)
,
,則
.
直線(xiàn)
的方程為
.
令
,得
.
將
,
代入,
整理,得
. ②
由①得
,
代入②
整理,得
.
所以直線(xiàn)
與
軸相交于定點(diǎn)
. …………………………10分
(3)當(dāng)過(guò)點(diǎn)
直線(xiàn)
的斜率存在時(shí),
設(shè)直線(xiàn)
的方程為
,
,
.
由
得
.
∴
,
,
.
則![]()
.
因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052502452104687586/SYS201205250246505312642065_DA.files/image036.png">,所以
.
所以
.
當(dāng)過(guò)點(diǎn)
直線(xiàn)
的斜率不存在時(shí),其方程為
.
解得
,
.
此時(shí)
.
所以
的取值范圍是
. …………………………16分
【解析】略
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(2010江蘇卷)18、(本小題滿(mǎn)分16分)
在平面直角坐標(biāo)系
中,如圖,已知橢圓
的左、右頂點(diǎn)為A、B,右焦點(diǎn)為F。設(shè)過(guò)點(diǎn)T(
)的直線(xiàn)TA、TB與橢圓分別交于點(diǎn)M
、
,其中m>0,
。
(1)設(shè)動(dòng)點(diǎn)P滿(mǎn)足
,求點(diǎn)P的軌跡;
(2)設(shè)
,求點(diǎn)T的坐標(biāo);
(3)設(shè)
,求證:直線(xiàn)MN必過(guò)x軸上的一定點(diǎn)(其坐標(biāo)與m無(wú)關(guān))。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年泰州中學(xué)高一下學(xué)期期末測(cè)試數(shù)學(xué) 題型:解答題
(本小題滿(mǎn)分16分)
函數(shù)
,
(
),
A=![]()
(Ⅰ)求集合A;
(Ⅱ)如果
,對(duì)任意
時(shí),
恒成立,求實(shí)數(shù)
的范圍;
(Ⅲ)如果
,當(dāng)“
對(duì)任意
恒成立”與“
在
內(nèi)必有解”同時(shí)成立時(shí),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆江蘇大豐新豐中學(xué)高二上期中考試文數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿(mǎn)分16分) 本題請(qǐng)注意換算單位
某開(kāi)發(fā)商用9000萬(wàn)元在市區(qū)購(gòu)買(mǎi)一塊土地建一幢寫(xiě)字樓,規(guī)劃要求寫(xiě)字樓每層建筑面積為2000平方米。已知該寫(xiě)字樓第一層的建筑費(fèi)用為每平方米4000元,從第二層開(kāi)始,每一層的建筑費(fèi)用比其下面一層每平方米增加100元。
(1)若該寫(xiě)字樓共x層,總開(kāi)發(fā)費(fèi)用為y萬(wàn)元,求函數(shù)y=f(x)的表達(dá)式;
(總開(kāi)發(fā)費(fèi)用=總建筑費(fèi)用+購(gòu)地費(fèi)用)
(2)要使整幢寫(xiě)字樓每平方米開(kāi)發(fā)費(fèi)用最低,該寫(xiě)字樓應(yīng)建為多少層?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆安徽省蚌埠市高二下學(xué)期期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿(mǎn)分16分)設(shè)命題
:方程
無(wú)實(shí)數(shù)根;
命題
:函數(shù)
的值域是
.如果命題
為真命題,
為假命題,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省高一第三階段檢測(cè)數(shù)學(xué)卷 題型:解答題
(本小題滿(mǎn)分16分)
已知函數(shù)f(x)=
為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對(duì)稱(chēng)軸間的距離為![]()
(Ⅰ)求f(
)的值;
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移
個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)延長(zhǎng)到原來(lái)的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com