【題目】已知拋物線
:
,焦點為
,其準(zhǔn)線與
軸交于點
.橢圓
:分別以
、
為左、右焦點,其離心率
,且拋物線
和橢圓
的一個交點記為
.
(1)當(dāng)
時,求橢圓
的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,若直線
經(jīng)過橢圓
的右焦點
,且與拋物線
相交于
,
兩點,若弦長
等于
的周長,求直線
的方程.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,
分別為左,右焦點,
分別為左,右頂點,D為上頂點,原點
到直線
的距離為
.設(shè)點
在第一象限,縱坐標(biāo)為t,且
軸,連接
交橢圓于點
.
![]()
(1)求橢圓
的方程;
(2)(文)若三角形
的面積等于四邊形
的面積,求直線
的方程;
(理)求過點
的圓方程(結(jié)果用t表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1:ρ=1,曲線C2:
(t為參數(shù))
(1)求C1與C2交點的坐標(biāo);
(2)若把C1,C2上各點的縱坐標(biāo)都壓縮為原來的一半,分別得到曲線C1′與C2′,寫出C1′與C2′的參數(shù)方程,C1與C2公共點的個數(shù)和C1′與C2′公共點的個數(shù)是否相同,說明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足條件f(0)=1,及f(x+1)﹣f(x)=2x.
(1)求函數(shù)f(x)的解析式;
(2)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,試確定實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
是定義域為
的奇函數(shù),當(dāng)
時,
.
![]()
(
)求出函數(shù)
在
上的解析式;
(
)畫出函數(shù)
的圖象,并根據(jù)圖象直接寫出
的單調(diào)區(qū)間;
(
)求使
時的
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中為真命題的是( ) .
A.“若
,則
”的否命題B.“若
,則
”的逆命題.
C.“若
,則
”的否命題D.“若
,則
”的逆否命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐
中,
,
,
,若該三棱錐的四個頂點均在同一球面上,則該球的體積為( )
![]()
A.
B.
C.
D. ![]()
【答案】D
【解析】在三棱錐
中,因為
,
,
,所以
,則該幾何體的外接球即為以
為棱長的長方體的外接球,則
,其體積為
;故選D.
點睛:在處理幾何體的外接球問題,往往將所給幾何體與正方體或長方體進(jìn)行聯(lián)系,常用補(bǔ)體法補(bǔ)成正方體或長方體進(jìn)行處理,本題中由數(shù)量關(guān)系可證得
從而幾何體的外接球即為以
為棱長的長方體的外接球,也是處理本題的技巧所在.
【題型】單選題
【結(jié)束】
21
【題目】已知函數(shù)
,則
的大致圖象為( )
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com