設(shè)兩條平行直線的方程分別為x+y+a=0、x+y+b=0,已知a、b是關(guān)于x的方程x2+x+c=0的兩個實(shí)數(shù)根,且0≤c≤
,則這兩條直線之間的距離的最大值和最小值分別為 ( )
A.
,
B.
,![]()
C.
,
D.
,![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| PQ |
| MQ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| 1 |
| 2 |
| 1 |
| 2 |
| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 2 |
| ||
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
A.
,
B.
,
C.
,
D.
,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆重慶市高二12月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分13分)已知拋物線
過點(diǎn)
。
(1)求拋物線
的標(biāo)準(zhǔn)方程,并求其準(zhǔn)線方程;
(2)是否存在平行于
(
為坐標(biāo)原點(diǎn))的直線
,使得直線
與
的距離等于
?
若存在,求直線
的方程,若不存在,說明理由。
(3)過拋物線
的焦點(diǎn)
作兩條斜率存在且互相垂直的直線
,設(shè)
與拋物線
相交于點(diǎn)
,
與拋物線
相交于點(diǎn)
,求
的最小值。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com