【題目】為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統(tǒng)計(jì)學(xué)家勞倫茨提出了著名的勞倫茨曲線,如圖所示.勞倫茨曲線為直線
時(shí),表示收入完全平等,勞倫茨曲線為折線
時(shí),表示收入完全不平等.記區(qū)域
為不平等區(qū)域,
表示其面積,
為
的面積.將
,稱為基尼系數(shù).對于下列說法:
![]()
①
越小,則國民分配越公平;
②設(shè)勞倫茨曲線對應(yīng)的函數(shù)為
,則對
,均有
;
③若某國家某年的勞倫茨曲線近似為
,則
;
其中正確的是:( )
A.①②B.①③C.②③D.①②③
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
,曲線
在點(diǎn)
處的切線與直線
平行,求
的值;
(2)若
,且函數(shù)
的值域?yàn)?/span>
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)拋物線C1:
的準(zhǔn)線1與x軸交于橢圓C2:
的右焦點(diǎn)F2,F1為C2的左焦點(diǎn).橢圓的離心率為
,拋物線C1與橢圓C2交于x軸上方一點(diǎn)P,連接PF1并延長其交C1于點(diǎn)Q,M為C1上一動點(diǎn),且在P,Q之間移動.
![]()
(1)當(dāng)
取最小值時(shí),求C1和C2的方程;
(2)若△PF1F2的邊長恰好是三個(gè)連續(xù)的自然數(shù),當(dāng)△MPQ面積取最大值時(shí),求面積最大值以及此時(shí)直線MP的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形
是邊長為2的菱形,且
,
平面
,
,
,點(diǎn)
是線段
上任意一點(diǎn).
![]()
(1)證明:平面
平面
;
(2)若
的最大值是
,求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為配合“2019雙十二”促銷活動,某公司的四個(gè)商品派送點(diǎn)如圖環(huán)形分布,并且公司給
四個(gè)派送點(diǎn)準(zhǔn)備某種商品各50個(gè).根據(jù)平臺數(shù)據(jù)中心統(tǒng)計(jì)發(fā)現(xiàn),需要將發(fā)送給
四個(gè)派送點(diǎn)的商品數(shù)調(diào)整為40,45,54,61,但調(diào)整只能在相鄰派送點(diǎn)進(jìn)行,每次調(diào)動可以調(diào)整1件商品.為完成調(diào)整,則( )
![]()
A.最少需要16次調(diào)動,有2種可行方案
B.最少需要15次調(diào)動,有1種可行方案
C.最少需要16次調(diào)動,有1種可行方案
D.最少需要15次調(diào)動,有2種可行方案
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)
,下列判斷正確的是( )
A.
有最大值和最小值
B.
的圖象的對稱中心為
(
)
C.
在
上存在單調(diào)遞減區(qū)間
D.
的圖象可由
的圖象向左平移
個(gè)單位而得
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校進(jìn)行自主招生選拔,分筆試和面試兩個(gè)階段進(jìn)行,規(guī)定分?jǐn)?shù)不小于筆試成績中位數(shù)的具有面試資格.現(xiàn)有1000余名學(xué)生參加了筆試考試,所有學(xué)生的成績均在區(qū)間
內(nèi),其頻率分布直方圖如圖.
![]()
(1)求獲得面試資格應(yīng)劃定的最低分?jǐn)?shù)線;
(2)從筆試得分在區(qū)間
的學(xué)生中,利用分層抽樣的方法隨機(jī)抽取7人,那么從得分在區(qū)間
與
各抽取多少人?
(3)從(2)抽取的7人中,選出4人參加學(xué)校座談交流,學(xué)校打算給這4人一定的物質(zhì)獎勵(lì),若該生分?jǐn)?shù)在
給予300元物質(zhì)獎勵(lì),若該生分?jǐn)?shù)在
給予500元物質(zhì)獎勵(lì),用
表示學(xué)校發(fā)的獎金數(shù)額,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)若
,
,求函數(shù)
在
處的切線方程;
(2)若
,且
是函數(shù)
的一個(gè)極值點(diǎn),確定
的單調(diào)區(qū)間;
(3)若
,
且對任意
,
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.若g(x)存在2個(gè)零點(diǎn),則a的取值范圍是
A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com