分析 (Ⅰ)設橢圓的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),由題意可得2b=2,即b=1,再由離心率公式可得a,進而得到橢圓方程;
(Ⅱ)設P(m,n),M(x,y),運用中點坐標公式和代入法,即可得到所求軌跡方程;
(Ⅲ)設直線l的方程為y=kx+1,代入橢圓方程x2+2y2=2,解得交點的坐標,由兩點的距離公式,解方程可得斜率k,進而得到直線方程.
解答 解:(Ⅰ)設橢圓的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),
由題意可得2b=2,即b=1,
又e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,即a2-c2=1,
解得a=$\sqrt{2}$,c=1,
則橢圓方程為$\frac{{x}^{2}}{2}$+y2=1;
(Ⅱ)設P(m,n),M(x,y),
則$\frac{{m}^{2}}{2}$+n2=1,
由題意可得2x=m+1,2y=n+$\frac{1}{2}$,
即為m=2x-1,n=2y-$\frac{1}{2}$,
可得線段PA中點M的軌跡方程為2(x-$\frac{1}{2}$)2+4(y-$\frac{1}{4}$)2=1;
(Ⅲ)設直線l的方程為y=kx+1,
代入橢圓方程x2+2y2=2,可得(1+2k2)x2+4kx=0,
解得x=0或x=-$\frac{4k}{1+2{k}^{2}}$,
即有交點為(0,1)和(-$\frac{4k}{1+2{k}^{2}}$,$\frac{1-2{k}^{2}}{1+2{k}^{2}}$),
則弦長為$\sqrt{\frac{16{k}^{2}}{(1+2{k}^{2})^{2}}+(1-\frac{1-2{k}^{2}}{1+2{k}^{2}})^{2}}$=$\frac{4|k|\sqrt{1+{k}^{2}}}{1+2{k}^{2}}$=$\frac{4\sqrt{2}}{3}$,
解得k=±1,
則直線l的方程為y=x+1或y=-x+1.
點評 本題考查橢圓的方程的求法,注意運用離心率公式,考查中點的軌跡方程的求法,注意運用代入法和中點坐標公式,考查直線方程和橢圓方程聯(lián)立,運用兩點的距離公式,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | (0,1) | B. | (0,2) | C. | (1,2) | D. | (1,+∞) |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com