| A. | -3 | B. | -2 | C. | 3 | D. | 2 |
分析 根據(jù)函數(shù)奇偶性和對稱性的性質進行轉化求解即可.
解答 解:∵定義在R上的函數(shù)f(x)是奇函數(shù)且滿足f($\frac{3}{2}$-x)=f(x),
∴f($\frac{3}{2}$-x)=f(x)=-f(x-$\frac{3}{2}$),
即f(x+$\frac{3}{2}$)=-f(x),
則f(x+3)=f(x+$\frac{3}{2}$+$\frac{3}{2}$)=-f(x+$\frac{3}{2}$)=f(x),
則函數(shù)的周期是3,
則f(2010)+f(2012)=f(270×3)+f(270×3+2)=f(0)+f(2)=f(2)=-f(-2)=-(-3)=3,
故選:C
點評 本題主要考查函數(shù)值的計算,根據(jù)函數(shù)奇偶性和對稱性的關系求出函數(shù)的周期是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 3個 | B. | 2個 | C. | 1個 | D. | 0個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 20 | B. | 22.5 | C. | 22.75 | D. | 25 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 2$\sqrt{2}$ | B. | 4$\sqrt{2}$ | C. | 6$\sqrt{2}$ | D. | 8$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | ${∫}_{0}^{π}$cosxdx | B. | ${∫}_{0}^{\frac{π}{2}}$cosxdx+|${∫}_{\frac{π}{2}}^{π}$cosxdx| | ||
| C. | ${∫}_{0}^{π}$2sinxdx | D. | ${∫}_{0}^{π}$2|cosx|dx |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com