【題目】如圖,在四棱錐
中,底面
為平行四邊形,
為側(cè)棱
的中點(diǎn).
![]()
(Ⅰ)求證:
∥平面![]()
(Ⅱ)若
,
,
求證:平面![]()
平面![]()
【答案】(1)(2)均見(jiàn)解析.
【解析】試題分析:(1)連結(jié)AC,交BD于O,連結(jié)OE,E為PA的中點(diǎn),利用三角形中位線的性質(zhì),可知OE∥PC,利用線面平行的判定定理,即可得出結(jié)論;
(2)先證明PA⊥DE,再證明PA⊥OE,可得PA⊥平面BDE,從而可得平面BDE⊥平面PAB.
證明:(1)連結(jié)AC,交BD于O,連結(jié)OE.
因?yàn)?/span>ABCD是平行四邊形,所以OA=OC.…(2分)
因?yàn)?/span>E為側(cè)棱PA的中點(diǎn),所以OE∥PC.…(4分)
因?yàn)?/span>PC平面BDE,OE平面BDE,所以PC∥平面BDE.…(6分)
(2)因?yàn)?/span>E為PA中點(diǎn),PD=AD,所以PA⊥DE.…(8分)
因?yàn)?/span>PC⊥PA,OE∥PC,所以PA⊥OE.
因?yàn)?/span>OE平面BDE,DE平面BDE,OE∩DE=E,
所以PA⊥平面BDE.…(12分)
因?yàn)?/span>PA平面PAB,所以平面BDE⊥平面PAB.…(14分)
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以橢圓
的四個(gè)頂點(diǎn)為頂點(diǎn)的四邊形的四條邊與
共有
個(gè)交點(diǎn),且這
個(gè)交點(diǎn)恰好把圓周六等分.
(1)求橢圓
的方程;
(2)若直線
與
相切,且橢圓
相交于
兩點(diǎn),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬(wàn)元,每生產(chǎn)
千件,需另投入成本
,當(dāng)年產(chǎn)量不足80千件時(shí),
(萬(wàn)元);當(dāng)年產(chǎn)量不小于80千件時(shí)
(萬(wàn)元),通過(guò)市場(chǎng)分析,若每件售價(jià)為500元時(shí),該廠本年內(nèi)生產(chǎn)該商品能全部銷售完.
(1)寫(xiě)出年利潤(rùn)
(萬(wàn)元)關(guān)于年產(chǎn)量
(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲的利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,已知AA1⊥底面ABC,AC⊥BC,四邊形BB1C1C為正方形,設(shè)AB1的中點(diǎn)為D,B1C∩BC1=E.
![]()
求證:(1)DE∥平面AA1C1C;
(2)BC1⊥平面AB1C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高二奧賽班N名學(xué)生的物理測(cè)評(píng)成績(jī)(滿分120分)分布直方圖如下,已知分?jǐn)?shù)在100~110的學(xué)生數(shù)有21人。
![]()
(Ⅰ)求總?cè)藬?shù)N和分?jǐn)?shù)在110~115分的人數(shù)n;
(Ⅱ)現(xiàn)準(zhǔn)備從分?jǐn)?shù)在110~115分的n名學(xué)生(女生占
)中任選2人,求其中恰好含有一名女生的概率;
(Ⅲ)為了分析某個(gè)學(xué)生的學(xué)習(xí)狀態(tài),對(duì)其下一階段的學(xué)習(xí)提供指導(dǎo)性建議,對(duì)他前7次考試的數(shù)學(xué)成績(jī)x(滿分150分),物理成績(jī)y進(jìn)行分析,下面是該生7次考試的成績(jī)。
數(shù)學(xué) | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
已知該生的物理成績(jī)y與數(shù)學(xué)成績(jī)x是線性相關(guān)的,若該生的數(shù)學(xué)成績(jī)達(dá)到130分,請(qǐng)你估計(jì)他的物理成績(jī)大約是多少?
附:對(duì)于一組數(shù)據(jù)
其回歸線
的斜率和截距的最小二乘估計(jì)分別為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓
.
(1)判斷圓
與圓
的位置關(guān)系,并說(shuō)明理由;
(2)若過(guò)點(diǎn)
的直線 與圓
相切,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在銳角△ABC中,三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且acsin C=(a2+c2-b2)·sin B.
(1)若C=
,求A的大。
(2)若a≠b,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1)所示,在直角梯形
中,
,
,
,
,
是
的中點(diǎn),
是
與
的交點(diǎn).將△
沿
折起到△
的位置,如圖(2)所示.
![]()
(1)證明:
平面
;
(2)若平面
平面
,求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)L為曲線C:y=
在點(diǎn)(1,0)處的切線.
(1)求L的方程;
(2)證明:除切點(diǎn)(1,0)之外,曲線C在直線L的下方.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com