【題目】定義域為R的偶函數(shù)f(x)滿足對x∈R,有f(x+2)=f(x)﹣f(1),且當x∈[2,3]時,f(x)=﹣2x2+12x﹣18,若函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個零點,則a的取值范圍是 .
【答案】(0,
)
【解析】解:∵f(x+2)=f(x)﹣f(1),
且f(x)是定義域為R的偶函數(shù),
令x=﹣1可得f(﹣1+2)=f(﹣1)﹣f(1),
又f(﹣1)=f(1),
∴f(1)=0 則有f(x+2)=f(x),
∴f(x)是最小正周期為2的偶函數(shù).
當x∈[2,3]時,f(x)=﹣2x2+12x﹣18=﹣2(x﹣3)2 ,
函數(shù)的圖象為開口向下、頂點為(3,0)的拋物線.
∵函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個零點,
令g(x)=loga(|x|+1),則f(x)的圖象和g(x)的圖象至少有3個交點.
∵f(x)≤0,∴g(x)≤0,可得0<a<1,
要使函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個零點,
則有g(2)>f(2),可得 loga(2+1)>f(2)=﹣2,
即loga3>﹣2,∴3<
,解得-
<a<
,又0<a<1,∴0<a<
,
故答案為:(0,
).![]()
令x=﹣1,求出f(1),可得函數(shù)f(x)的周期為2,當x∈[2,3]時,f(x)=﹣2x2+12x﹣18,畫出圖形,根據(jù)函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上至少有三個零點,利用數(shù)形結合的方法進行求解.
科目:高中數(shù)學 來源: 題型:
【題目】某大學生在開學季準備銷售一種文具套盒進行試創(chuàng)業(yè),在一個開學季內(nèi),每售出
盒該產(chǎn)品獲利潤
元;未售出的產(chǎn)品,每盒虧損
元.根據(jù)歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖所示。該同學為這個開學季購進了
盒該產(chǎn)品,以
(單位:盒,
)表示這個開學季內(nèi)的市場需求量,
(單位:元)表示這個開學季內(nèi)經(jīng)銷該產(chǎn)品的利潤。
![]()
(1)求市場需求量在[100,120]的概率;
(2)根據(jù)直方圖估計這個開學季內(nèi)市場需求量
的中位數(shù);
(3)將
表示為
的函數(shù),并根據(jù)直方圖估計利潤不少于
元的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,過點B作⊙O的切線BC,OC交⊙O于點E,AE的延長線交BC于點D. ![]()
(1)求證:CE2=CDCB.
(2)若AB=2,BC=
,求CE與CD的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)f(x)=(|x﹣2|+1)4,給出如下三個命題:①f(x+2)是偶函數(shù);②f(x)在區(qū)間(﹣∞,2)上是減函數(shù),在區(qū)間(2,+∞)上是增函數(shù);③f(x)沒有最小值.其中正確的個數(shù)為( 。
A. 1 B. 2 C. 3 D. 0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M、N分別是A1B1、A1C1的中點,BC=AC=CC1 , 則CN與AM所成角的余弦值等于( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位安排
位員工在春節(jié)期間大年初一到初七值班,每人值班
天,若
位員工中的甲、乙排在相鄰的兩天,丙不排在初一,丁不排在初七,則不同的安排方案共有( )
A.
種 B.
種 C.
種 D.
種
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列
的前
項和為
,等比數(shù)列
的前
項和為
,且
,
,
.
(1)若
,求
的通項公式;
(2)若
,求
.
【答案】(1)
;(2)21或
.
【解析】試題分析:(1)設等差數(shù)列
公差為
,等比數(shù)列
公比為
,由已知條件求出
,再寫出通項公式;(2)由
,求出
的值,再求出
的值,求出
。
試題解析:設等差數(shù)列
公差為
,等比數(shù)列
公比為
有
,即
.
(1)∵
,結合
得
,
∴
.
(2)∵
,解得
或3,
當
時,
,此時
;
當
時,
,此時
.
【題型】解答題
【結束】
20
【題目】如圖,已知直線與拋物線
相交于
兩點,且
,
交
于
,且點
的坐標為
.
![]()
(1)求
的值;
(2)若
為拋物線的焦點,
為拋物線上任一點,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)
,曲線
在點
處的切線方程為
.
(1)求
的解析式;
(2)證明:曲線
上任一點處的切線與直線
和直線
所圍成的三角形面積為定值,并求此定值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com