【題目】已知曲線
的極坐標(biāo)方程為
,在以極點為直角坐標(biāo)原點
,極軸為
軸的正半軸建立的平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)).
(1)寫出直線
的普通方程與曲線
的直角坐標(biāo)方程;
(2)在平面直角坐標(biāo)系中,設(shè)曲線
經(jīng)過伸縮變換
:
得到曲線
,若
為曲線
上任意一點,求點
到直線
的最小距離.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}滿足a3=7,a5+a7=26,數(shù)列{an}的前n項和Sn .
(1)求an及Sn;
(2)令bn=
(n∈N*),求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(
+3x2)n的展開式中,各項系數(shù)和比它的二項式系數(shù)和大992,求:
(1)展開式中二項式系數(shù)最大的項;
(2)展開式中系數(shù)最大的項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名同學(xué)8次數(shù)學(xué)測驗成績?nèi)缜o葉圖所示,
1 ,
2分別表示甲、乙兩名同學(xué)8次數(shù)學(xué)測驗成績的平均數(shù),s1 , s2分別表示甲、乙兩名同學(xué)8次數(shù)學(xué)測驗成績的標(biāo)準(zhǔn)差,則有( )![]()
A.
1>
2 , s1<s2![]()
B.
1=
2 , s1<s2![]()
C.
1=
2 , s1=s2 ![]()
D.
1<
2 , s1>s2![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】長方體ABCD﹣A1B1C1D1中AB=AA1=2,AD=1,E為CC1的中點,則異面直線BC1與AE所成角的余弦值為( )![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:x>0,x+
>a;命題q:x0∈R,x02﹣2ax0+1≤0.若¬q為假命題,p∧q為假命題,則求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差為0的等差數(shù)列{an}滿足a1=1,且a1 , a3﹣2,a9成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)記數(shù)列{
}的前n項和為Sn , 并求使得Sn>
+
成立的最小正整數(shù)n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn=2n+1,(n∈N*).
(1)求數(shù)列{an}的通項an;
(2)設(shè)bn=nan+1 , 求數(shù)列{bn}的前n項和Tn;
(3)設(shè)cn=
,求證:c1+c2+…+cn<
.(n∈N*)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
+
=1(a>b>0)的離心率為
,其中左焦點F(﹣2,0).
(1)求橢圓C的方程;
(2)若直線y=x+m與橢圓C交于不同的兩點A,B,且線段的中點M在圓x2+y2=1上,求m的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com