設(shè)公比大于零的等比數(shù)列
的前
項(xiàng)和為
,且
,
,數(shù)列
的前
項(xiàng)和為
,滿足
,
,
.
(Ⅰ)求數(shù)列
、
的通項(xiàng)公式;
(Ⅱ)滿足
對(duì)所有的
均成立,求實(shí)數(shù)
的取值范圍.
(Ⅰ)
;
;(Ⅱ)
.
解析試題分析:(Ⅰ)由等比數(shù)列的前
項(xiàng)和公式及關(guān)系式求數(shù)列的公比和通項(xiàng)公式,再由數(shù)列
的遞推公式列方程組求
,根據(jù)
求得通項(xiàng)
;(Ⅱ)由題意構(gòu)造新的數(shù)列
,再利用作差法得
的最小值,可知
的取值范圍.
試題解析:(Ⅰ)由
,
得
3分
又
(
,
則得![]()
所以
,當(dāng)
時(shí)也滿足. 7分
(Ⅱ)設(shè)
,則
, ![]()
![]()
即![]()
當(dāng)
或
時(shí),
的最小值是
所以
. 14分
考點(diǎn):1、等比數(shù)列的通項(xiàng);2、遞推公式;3、作差法比較數(shù)列各項(xiàng)的大小.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列
和
的通項(xiàng)公式分別為
,
.將
與
中的公共項(xiàng)按照從小到大的順序排列構(gòu)成一個(gè)新數(shù)列記為
.
(1)試寫出
,
,
,
的值,并由此歸納數(shù)列
的通項(xiàng)公式;
(2)證明你在(1)所猜想的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}中,a1=1,前n項(xiàng)和Sn=
an.
(1)求a2,a3;
(2)求{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若無(wú)窮數(shù)列
滿足:①對(duì)任意
,
;②存在常數(shù)
,對(duì)任意
,
,則稱數(shù)列
為“
數(shù)列”.
(Ⅰ)若數(shù)列
的通項(xiàng)為![]()
,證明:數(shù)列
為“
數(shù)列”;
(Ⅱ)若數(shù)列
的各項(xiàng)均為正整數(shù),且數(shù)列
為“
數(shù)列”,證明:對(duì)任意
,
;
(Ⅲ)若數(shù)列
的各項(xiàng)均為正整數(shù),且數(shù)列
為“
數(shù)列”,證明:存在
,數(shù)列
為等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
是正數(shù)組成的數(shù)列,
,且點(diǎn)
在函數(shù)
的圖象上.
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)若數(shù)列
滿足
,
,求證:![]()
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列
的前
項(xiàng)和
滿足
,其中
.
⑴若
,求
及
;
⑵若
,求證:
,并給出等號(hào)成立的充要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)
是首項(xiàng)為
,公差為
的等差數(shù)列
,
是其前
項(xiàng)和.
(1)若
,
,求數(shù)列
的通項(xiàng)公式;
(2)記
,
,且
、
、
成等比數(shù)列,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列
的通項(xiàng)公式為
,數(shù)列
的前
項(xiàng)和為
,且滿足
.
(1)求
的通項(xiàng)公式;
(2)在
中是否存在使得
是
中的項(xiàng),若存在,請(qǐng)寫出滿足題意的其中一項(xiàng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列
的前
項(xiàng)和為
,且
是
和
的等差中項(xiàng),等差數(shù)列
滿足
,
.
(1)求數(shù)列
、
的通項(xiàng)公式;
(2)設(shè)
,數(shù)列
的前
項(xiàng)和為
,證明:
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com