【題目】如圖是一個(gè)以A1B1C1為底面的直三棱柱被一平面所截得到的幾何體,截面為ABC,已知A1B1=B1C1=2,∠A1B1C1=90°,AA1=4,BB1=3,CC1=2,求:
![]()
(Ⅰ)該幾何體的體積;
(Ⅱ)截面ABC的面積.
【答案】(Ⅰ)6;(Ⅱ)
.
【解析】分析:(Ⅰ)過(guò)C作平行于A1B1C1的截面A2B2C,交AA1,BB1分別于點(diǎn)A2,B2.由題意可知B2C⊥平面ABB2A2,據(jù)此可得V=
+
=6 ,
(Ⅱ)在△ABC中,由題意可得
,據(jù)此可得
.
詳解:(Ⅰ)過(guò)C作平行于A1B1C1的截面A2B2C,交AA1,BB1分別于點(diǎn)A2,B2.
由直三棱柱性質(zhì)及∠A1B1C1=90°可知B2C⊥平面ABB2A2,
則該幾何體的體積V=![]()
=
×2×2×2+
×
×(1+2)×2×2=6 ,
(Ⅱ)在△ABC中,AB=
=
,
BC=
=
,
AC=
=2
.
則S△ABC=
×2
×
=
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列
的各項(xiàng)均為正數(shù),前
項(xiàng)和為
,且
.
(1)求證:數(shù)列
是等差數(shù)列;
(2)設(shè)
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著國(guó)家二孩政策的全面放開(kāi),為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機(jī)構(gòu)用簡(jiǎn)單隨機(jī)抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結(jié)果如表.
非一線 | 一線 | 總計(jì) | |
愿生 | 45 | 20 | 65 |
不愿生 | 13 | 22 | 35 |
總計(jì) | 58 | 42 | 100 |
附表:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
由K2=
算得,K2=
≈9.616參照附表,得到的正確結(jié)論是( )
A.在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“生育意愿與城市級(jí)別有關(guān)”
B.在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“生育意愿與城市級(jí)別無(wú)關(guān)”
C.有99%以上的把握認(rèn)為“生育意愿與城市級(jí)別有關(guān)”
D.有99%以上的把握認(rèn)為“生育意愿與城市級(jí)別無(wú)關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】本著健康、低碳的生活理念,租自行車騎游的人越來(lái)越多.某自行車租車點(diǎn)的收費(fèi)標(biāo)準(zhǔn)是每車每次租時(shí)間不超過(guò)兩小時(shí)免費(fèi),超過(guò)兩個(gè)小時(shí)的部分每小時(shí)收費(fèi)2元(不足1小時(shí)的部分按1小時(shí)計(jì)算).有甲、乙兩人獨(dú)立來(lái)該租車點(diǎn)騎游(各組一車一次).設(shè)甲、乙不超過(guò)兩小時(shí)還車的概率分別為
,
;兩小時(shí)以上且不超過(guò)三小時(shí)還車的概率分別為
,
;兩人租車時(shí)間都不會(huì)超過(guò)四小時(shí).
(1)求甲、乙兩人所付租車費(fèi)用相同的概率;
(2)設(shè)甲、乙兩人所付的租車費(fèi)用之和為隨機(jī)變量
,求
的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知菱形
的邊長(zhǎng)為2,
.
是邊
上一點(diǎn),線段
交
于點(diǎn)
.
(1)若
的面積為
,求
的長(zhǎng);
(2)若
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:
=1(a>b>0)的離心率為
,F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn),M為橢圓上除長(zhǎng)軸端點(diǎn)外的任意一點(diǎn),且△MF1F2的周長(zhǎng)為4+2
.
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)D(0,﹣2)作直線l與橢圓C交于A、B兩點(diǎn),點(diǎn)N滿足
(O為原點(diǎn)),求四邊形OANB面積的最大值,并求此時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線C的參數(shù)方程為
為參數(shù)),曲線P在以該直角坐標(biāo)系的原點(diǎn)O的為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系下的方程為ρ2﹣4ρcosθ+3=0.
(1)求直線C的普通方程和曲線P的直角坐標(biāo)方程;
(2)設(shè)直線C和曲線P的交點(diǎn)為A、B,求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了得到函數(shù)
的圖象,只需把函數(shù)
的圖象上所有的點(diǎn)( )
A.向右平行移動(dòng)
個(gè)單位長(zhǎng)度
B.向左平行移動(dòng)
個(gè)單位長(zhǎng)度
C.向左平行移動(dòng)
個(gè)單位長(zhǎng)度
D.向右平行移動(dòng)
個(gè)單位長(zhǎng)度
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線中心在原點(diǎn)且一個(gè)焦點(diǎn)為
,直線
與其相交于
,
兩點(diǎn),
中點(diǎn)的橫坐標(biāo)為
,則此雙曲線的方程是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com