【題目】設(shè)f(x)=x3+ax2+bx+1的導(dǎo)數(shù)f′(x)滿足f′(1)=2a,f′(2)=-b,其中常數(shù)a,b∈R.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)設(shè)g(x)=f′(x)e-x,求函數(shù)g(x)的極值.
【答案】(1)6x+2y-1=0.;(2)15e-3.
【解析】
試題(I)根據(jù)已知中f(x)=x3+ax2+bx+1,我們根據(jù)求函數(shù)導(dǎo)函數(shù)的公式,易求出導(dǎo)數(shù)f'(x),結(jié)合f'(1)=2a,f'(2)=﹣b,計算出參數(shù)a,b的值,然后求出f(1)及f'(1)的值,然后代入點斜式方程,即可得到曲線y=f(x)在點(1,f(1))處的切線方程.
(II)根據(jù)g(x)=f′(x)e﹣1求出函數(shù)g(x)的解析式,然后求出g(x)的導(dǎo)數(shù)g'(x)的解析式,求出導(dǎo)函數(shù)零點后,利用零點分段法,分類討論后,即可得到函數(shù)g(x)的極值.
解:(I)∵f(x)=x3+ax2+bx+1∴f'(x)=3x2+2ax+b.令x=1,得f'(1)=3+2a+b=2a,解得b=﹣3
令x=2,得f'(2)=12+4a+b=﹣b,因此12+4a+b=﹣b,解得a=﹣
,因此f(x)=x3﹣
x2﹣3x+1
∴f(1)=﹣
,
又∵f'(1)=2×(﹣
)=﹣3,
故曲線在點(1,f(1))處的切線方程為y﹣(﹣
)=﹣3(x﹣1),即6x+2y﹣1=0.
(II)由(I)知g(x)=(3x2﹣3x﹣3)e﹣x
從而有g'(x)=(﹣3x2+9x)e﹣x
令g'(x)=0,則x=0或x=3
∵當(dāng)x∈(﹣∞,0)時,g'(x)<0,
當(dāng)x∈(0,3)時,g'(x)>0,
當(dāng)x∈(3,+∞)時,g'(x)<0,
∴g(x)=(3x2﹣3x﹣3)e﹣x在x=0時取極小值g(0)=﹣3,在x=3時取極大值g(3)=15e﹣3
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
過點
,且離心率為![]()
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過原點的直線
與橢圓C交于P、Q兩點,且在直線
上存在點M,使得
為等邊三角形,求直線
的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠預(yù)購軟件服務(wù),有如下兩種方案:
方案一:軟件服務(wù)公司每日收取工廠60元,對于提供的軟件服務(wù)每次10元;
方案二:軟件服務(wù)公司每日收取工廠200元,若每日軟件服務(wù)不超過15次,不另外收費,若超過15次,超過部分的軟件服務(wù)每次收費標(biāo)準(zhǔn)為20元.
(1)設(shè)日收費為
元,每天軟件服務(wù)的次數(shù)為
,試寫出兩種方案中
與
的函數(shù)關(guān)系式;
(2)該工廠對過去100天的軟件服務(wù)的次數(shù)進行了統(tǒng)計,得到如圖所示的條形圖,依據(jù)該統(tǒng)計數(shù)據(jù),把頻率視為概率,從節(jié)約成本的角度考慮,從兩個方案中選擇一個,哪個方案更合適?請說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
(a>b>0),四點P1(1,1),P2(0,1),P3(–1,
),P4(1,
)中恰有三點在橢圓C上.
(1)求C的方程;
(2)設(shè)直線l不經(jīng)過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.若g(x)存在2個零點,則a的取值范圍是
A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖已知橢圓
,
是長軸的一個端點,弦
過橢圓的中心
,且
,
.
![]()
(Ⅰ)求橢圓的方程:
(Ⅱ)設(shè)
為橢圓上異于
且不重合的兩點,且
的平分線總是垂直于
軸,是否存在實數(shù)
,使得
,若存在,請求出
的最大值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知定圓
,定直線
過
的一條動直線
與直線
相交于
,與圓
相交于
兩點,
是
中點.
![]()
(1)當(dāng)
與
垂直時,求證:
過圓心
;
(2)當(dāng)![]()
時,求直線
的方程;
(3)設(shè)![]()
,試問
是否為定值,若為定值,請求出
的值;若不為定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,
,底面四邊形
為直角梯形,
,
,
為線段
上一點.
![]()
(1)若
,則在線段
上是否存在點
,使得
平面
?若存在,請確定
點的位置;若不存在,請說明理由
(2)己知
,若異面直線
與
成
角,二而角
的余弦值為
,求
的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,以坐標(biāo)原點
為極點,
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的方程為
,過點
的直線
的參數(shù)方程為
(
為參數(shù)).
(Ⅰ)求直線
的普通方程與曲線
的直角坐標(biāo)方程;
(Ⅱ)若直線
與曲線
交于
、
兩點,求
的值,并求定點
到
,
兩點的距離之積.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com