【題目】已知
為等腰直角三角形,
,將
沿底邊上的高線(xiàn)
折起到
位置,使
,如圖所示,分別取
的中點(diǎn)
.
![]()
(1)求二面角
的余弦值;
(2)判斷在線(xiàn)段
上是否存在一點(diǎn)
,使
平面
?若存在,求出點(diǎn)
的位置,若不存在,說(shuō)明理由.
【答案】(1)
(2)點(diǎn)
是線(xiàn)段
的中點(diǎn)時(shí),
平面
.
【解析】
試題(1)以
所在直線(xiàn)為
軸建立空間直角坐標(biāo)系,分別求出平面
與平面
的一個(gè)法向量,根據(jù)空間向量夾角余弦公式,可得結(jié)果;(2)假設(shè)在線(xiàn)段
上存在一點(diǎn)
,使
平面
,設(shè)
,根據(jù)
可求得
.
試題解析:由題知
,且
,分別以
所在直線(xiàn)為
軸建立空間直角坐標(biāo)系,則點(diǎn)
.
(1)
,設(shè)平面
的法向量為
,則
,得
,得
,當(dāng)
時(shí),得
,同理可得平面
的一個(gè)法向量為
,那么
,
所以二面角
的余弦值為
;
(2)假設(shè)在線(xiàn)段
上存在一點(diǎn)
,使
平面
,設(shè)
,
則由
,得
,得
,
那么
,當(dāng)
平面
時(shí),
,
即存在實(shí)數(shù)
,使
,解得
,那么
,
即點(diǎn)
是線(xiàn)段
的中點(diǎn)時(shí),
平面
.
【方法點(diǎn)晴】本題主要考查利用空間向量求二面角的大小以及存在性問(wèn)題,屬于中檔題.空間向量解答立體幾何問(wèn)題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫(xiě)出相應(yīng)點(diǎn)的坐標(biāo),求出相應(yīng)直線(xiàn)的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線(xiàn)垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列
為公差不為0的等差數(shù)列,首項(xiàng)
且
,
,
成等比數(shù)列.
(1)求數(shù)列
的通項(xiàng)公式;
(2)設(shè)數(shù)列
的前n項(xiàng)和為
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的離心率為
,
是橢圓的左、右焦點(diǎn),過(guò)
作直線(xiàn)
交橢圓于
兩點(diǎn),若
的周長(zhǎng)為8.
![]()
(1)求橢圓方程;
(2)若直線(xiàn)
的斜率不為0,且它的中垂線(xiàn)與
軸交于
點(diǎn),求
點(diǎn)的縱坐標(biāo)的范圍;
(3)是否在
軸上存在點(diǎn)
,使得
軸平分
?若存在,求出
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,分別記錄了4月1日至4月5日每天的晝夜溫差與每天100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 |
溫差 | 12 | 11 | 13 | 10 | 8 |
發(fā)芽率 | 26 | 25 | 30 | 23 | 16 |
(1)從這5天中任選2天,求至少有一天種子發(fā)芽數(shù)超過(guò)25顆的概率;
(2)請(qǐng)根據(jù)4月1日、4月2日、4月3日這3天的數(shù)據(jù),求出
關(guān)于
的線(xiàn)性回歸方程
;
(3)根據(jù)(2)中所得的線(xiàn)性回歸方程,預(yù)測(cè)溫差為
時(shí),種子發(fā)芽的顆數(shù).
參考公式:
,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,∠BCD=135°,側(cè)面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分別為BC,AD的中點(diǎn),點(diǎn)M在線(xiàn)段PD上.
![]()
(Ⅰ)求證:EF⊥平面PAC;
(Ⅱ)若M為PD的中點(diǎn),求證:ME∥平面PAB;
(Ⅲ)如果直線(xiàn)ME與平面PBC所成的角和直線(xiàn)ME與平面ABCD所成的角相等,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的兩個(gè)焦點(diǎn)
,
,離心率為
,
的周長(zhǎng)等于
,點(diǎn)
、
在橢圓上,且
在
邊上.
![]()
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)如圖,過(guò)圓
上任意一點(diǎn)
作橢圓的兩條切線(xiàn)
和
與圓
交與點(diǎn)
、
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、
后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結(jié)論中不一定正確的是( )
![]()
A. 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中
后占一半以上
B. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的![]()
C. 互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)
后比
前多
D. 互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)
后比
后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】交通指數(shù)是指交通擁堵指數(shù)的簡(jiǎn)稱(chēng),是綜合反映道路網(wǎng)暢通或擁堵的概念性指數(shù)值,記交通指數(shù)為
,其范圍為
,分別有五個(gè)級(jí)別:
,暢通;
,基本暢通;
,輕度擁堵;
,中度擁堵;
,嚴(yán)重?fù)矶?在晚高峰時(shí)段(
),從某市交通指揮中心選取了市區(qū)20個(gè)交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的頻率分布直方圖如圖所示.
![]()
(1)求出輕度擁堵、中度擁堵、嚴(yán)重?fù)矶碌穆范蔚膫(gè)數(shù);
(2)用分層抽樣的方法從輕度擁堵、中度擁堵、嚴(yán)重?fù)矶碌穆范沃泄渤槿?個(gè)路段,求依次抽取的三個(gè)級(jí)別路段的個(gè)數(shù);
(3)從(2)中抽取的6個(gè)路段中任取2個(gè),求至少有1個(gè)路段為輕度擁堵的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)南宋著名數(shù)學(xué)家秦九韶(約1202—1261)被國(guó)外科學(xué)史家贊譽(yù)為“他那個(gè)民族,那個(gè)時(shí)代,并且確實(shí)也是所有時(shí)代最偉大的數(shù)學(xué)家之一”.他獨(dú)立推出了“三斜求積”公式,求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隅,開(kāi)平方得積.”把以上這段文字寫(xiě)成從三條邊長(zhǎng)求三角形面積的公式,就是
.現(xiàn)如圖,已知平面四邊形
中,
,
,
,
,
,則平面四邊形
的面積是_________.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com