【題目】某工廠要建造一個(gè)長(zhǎng)方體無(wú)蓋貯水池,其容積為6400m3 , 深為4m,如果池底每1m2的造價(jià)為300元,池壁每1m2的造價(jià)為240元,問(wèn)怎樣設(shè)計(jì)水池能使總造價(jià)最低,最低總造價(jià)是多少元?
【答案】解:設(shè)水池底面一邊的長(zhǎng)度為xm,水池的總造價(jià)為y元,則底面積為
=1600m2 , 池底的造價(jià)為1600×300=480000元, 則y=480000+1920(x+
)≥633600,當(dāng)且僅當(dāng)x=
,即x=40時(shí),y有最小值633600(元)當(dāng)水池的底面是邊長(zhǎng)為40m的正方形時(shí),水池的總造價(jià)最低,最低總造價(jià)是633600元.
答:最低總造價(jià)是633600元
【解析】設(shè)水池底面一邊的長(zhǎng)度為xm,水池的總造價(jià)為y元,推出y=480000+1920(x+
)利用基本不等式情節(jié)即可.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的短軸長(zhǎng)為
,橢圓
上任意一點(diǎn)到右焦點(diǎn)
距 離的最大值為
.
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)
作直線
與曲線
交于
兩點(diǎn),點(diǎn)
滿足
(
為坐標(biāo)原點(diǎn)),求四邊形
面積的最大值,并求此時(shí)的直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:
=1(a>b>0)與直線x+y﹣1=0相交于A、B兩點(diǎn),若a∈[
,
],且以AB為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O,則橢圓離心率e的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形
中,
與
相交于點(diǎn)
,
平面
,
.
(I)求證:
平面
;
(II)當(dāng)直線
與平面
所成的角為
時(shí),求二面角
的余弦角.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題一定正確的是( )
A.在等差數(shù)列{an}中,若ap+aq=ar+aδ , 則p+q=r+δ
B.已知數(shù)列{an}的前n項(xiàng)和為Sn , 若{an}是等比數(shù)列,則Sk , S2k﹣Sk , S3k﹣S2k也是等比數(shù)列
C.在數(shù)列{an}中,若ap+aq=2ar , 則ap , ar , aq成等差數(shù)列
D.在數(shù)列{an}中,若ap?aq=a
,則ap , ar , aq成等比數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】河道上有一座圓拱橋,在正常水位時(shí),拱圈最高點(diǎn)距水面9m,拱圈內(nèi)水面寬22m.一條船在水面以上部分高6.5m,船頂部寬4m,故通行無(wú)阻.近日水位暴漲了2.7m,為此,必須加重艦載,降低船身,才能通過(guò)橋洞.試問(wèn)船身至少應(yīng)該降低多少?(精確到0.01,參考數(shù)據(jù):
) ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】求函數(shù)y=sin(2x﹣
)的單調(diào)遞減區(qū)間,并敘述怎樣由函數(shù)y=sinx的圖像變換得到函數(shù)y=sin(2x﹣
)的圖像.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在四棱錐P﹣ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,點(diǎn)M,N分別為BC,PA的中點(diǎn),且PA=AB=2.
(Ⅰ)證明:BC⊥平面AMN;
(Ⅱ)求三棱錐N﹣AMC的體積;
(Ⅲ)在線段PD上是否存在一點(diǎn)E,使得NM∥平面ACE;若存在,求出PE的長(zhǎng);若不存在,說(shuō)明理由.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)
在橢圓
:
(
)上,設(shè)
,
,
分別為左頂點(diǎn)、上頂點(diǎn)、下頂點(diǎn),且下頂點(diǎn)
到直線
的距離為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)點(diǎn)
,
(
)為橢圓
上兩點(diǎn),且滿足
,求證:
的面積為定值,并求出該定值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com