已知橢圓
:
的左焦點(diǎn)為
,右焦點(diǎn)為
.![]()
(Ⅰ)設(shè)直線
過(guò)點(diǎn)
且垂直于橢圓的長(zhǎng)軸,動(dòng)直線
垂直
于點(diǎn)P,線段
的垂直平分線交
于點(diǎn)M,求點(diǎn)M的軌跡
的方程;
(Ⅱ)設(shè)
為坐標(biāo)原點(diǎn),取曲線
上不同于
的點(diǎn)
,以
為直徑作圓與
相交另外一點(diǎn)
,求該圓的面積最小時(shí)點(diǎn)
的坐標(biāo).
(Ⅰ)
(Ⅱ)
.
解析試題分析:(Ⅰ) 利用拋物線的定義“到定點(diǎn)的距離等于到定直線的距離”來(lái)求;(Ⅱ)直線與拋物線相交,聯(lián)立消元,設(shè)點(diǎn)代入化簡(jiǎn),利用基本不等式求最值.
試題解析:(I)
在線段
的垂直平分線上,∴| MP | =" |" M
|
故動(dòng)點(diǎn)M到定直線
的距離等于它到定點(diǎn)
的距離
因此動(dòng)點(diǎn)M的軌跡
是以
為準(zhǔn)線,
為焦點(diǎn)的拋物線,
所以點(diǎn)M的軌跡
的方程為
(II)因?yàn)橐設(shè)S為直徑的圓與
相交于點(diǎn)R,
所以
,即![]()
設(shè)
,
,則
,
,
,![]()
所以
,即![]()
∵
,
,∴![]()
故
,當(dāng)且僅當(dāng)
,即
時(shí)等號(hào)成立
當(dāng)
時(shí),
,圓的直徑
,
這時(shí)點(diǎn)S的坐標(biāo)為
.
考點(diǎn):拋物線的定義,向量的坐標(biāo)運(yùn)算,基本不等式,坐標(biāo)表示等,考查了學(xué)生的綜合化簡(jiǎn)計(jì)算能力.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓
:
的左、右焦點(diǎn)分別是
、
,下頂點(diǎn)為
,線段
的中點(diǎn)為
(
為坐標(biāo)原點(diǎn)),如圖.若拋物線
:
與
軸的交點(diǎn)為
,且經(jīng)過(guò)
、
兩點(diǎn).![]()
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)
,
為拋物線
上的一動(dòng)點(diǎn),過(guò)點(diǎn)
作拋物線
的切線交橢圓
于
、
兩點(diǎn),求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
以點(diǎn)F1(-1,0),F(xiàn)2(1,0)為焦點(diǎn)的橢圓C經(jīng)過(guò)點(diǎn)(1,
)。
(I)求橢圓C的方程;
(II)過(guò)P點(diǎn)分別以
為斜率的直線分別交橢圓C于A,B,M,N,求證:
使得![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)已知圓
,圓
,動(dòng)圓
與圓
外切并且與圓
內(nèi)切,圓心
的軌跡為曲線
。
(Ⅰ)求
的方程;
(Ⅱ)
是與圓
,圓
都相切的一條直線,
與曲線
交于
,
兩點(diǎn),當(dāng)圓
的半徑最長(zhǎng)是,求
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的右焦點(diǎn)為
,上頂點(diǎn)為B,離心率為
,圓
與
軸交于
兩點(diǎn)
(Ⅰ)求
的值;
(Ⅱ)若
,過(guò)點(diǎn)
與圓
相切的直線
與
的另一交點(diǎn)為
,求
的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的兩個(gè)焦點(diǎn)
和上下兩個(gè)頂點(diǎn)
是一個(gè)邊長(zhǎng)為2且∠F1B1F2為
的菱形的四個(gè)頂點(diǎn).
(1)求橢圓
的方程;
(2)過(guò)右焦點(diǎn)F2 ,斜率為
(
)的直線
與橢圓
相交于
兩點(diǎn),A為橢圓的右頂點(diǎn),直線
、
分別交直線
于點(diǎn)
、
,線段
的中點(diǎn)為
,記直線
的斜率為
.求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系
中,點(diǎn)
到兩點(diǎn)
的距離之和等于4,設(shè)點(diǎn)
的軌跡為
,直線
與
交于
兩點(diǎn).
(1)寫(xiě)出
的方程;
(2)若點(diǎn)
在第一象限,證明當(dāng)
時(shí),恒有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知?jiǎng)狱c(diǎn)
到定點(diǎn)
和
的距離之和為
.
(Ⅰ)求動(dòng)點(diǎn)
軌跡
的方程;
(Ⅱ)設(shè)
,過(guò)點(diǎn)
作直線
,交橢圓
異于
的
兩點(diǎn),直線
的斜率分別為
,證明:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:
的離心率等于
,點(diǎn)P
在橢圓上。
(1)求橢圓
的方程;
(2)設(shè)橢圓
的左右頂點(diǎn)分別為
,過(guò)點(diǎn)
的動(dòng)直線
與橢圓
相交于
兩點(diǎn),是否存在定直線
:
,使得
與
的交點(diǎn)
總在直線
上?若存在,求出一個(gè)滿足條件的
值;若不存在,說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com